• Title/Summary/Keyword: Reverberation model

Search Result 80, Processing Time 0.022 seconds

A Subjective Study on the Reverberation Characteristics of Coupled Spaces (음향적으로 결합된 공간의 주관적 잔향감에 관한 연구)

  • Jeong, Dae-Up;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.65-73
    • /
    • 2008
  • The present work deals with subjective assessments to propose the objective parameter related to the subjective attribute of reverberation in the coupled room varied the aperture opening size. A 1/10 scale model was built and used for the measurements and subjective assessments. For the subjective tests, binaural impulse responses(BIRs) were measured using a dummy head and the measured BIRs were convolved with anechoic recorded music for the presentation over the headphones. The results showed that the perceived reverberation was the largest in the aperture opening size 12.5%(1.97% of mail) room surface area)and decreased with increasing the aperture opening size over 25% (3.94% of main room surface area) in the main room coupled with the secondary reverberant room. In the main room coupled with the secondary absorptive room, there was no changes in the perceived reverberation up to the aperture opening size 6.25%(0.99% of main room surface area) and it gradually decreased with increasing the aperture opening site over 12.5%. The objective parameter, T30/T15, showed a very low correlation with the perceived reverberation in the coupled room varied the aperture opening size but showed a high correlation with a new objective parameter, T30/Tbp, proposed by the authors. Because the late part decay energy more rapidly increases with increasing the aperture opening site than the early and middle part decay energy, the LDT/EDT or T3/T1 is a better quantifier to measure double slopes in the coupled room than the T30/T15.

  • PDF

Single-Channel Non-Causal Speech Enhancement to Suppress Reverberation and Background Noise

  • Song, Myung-Suk;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.487-506
    • /
    • 2012
  • This paper proposes a speech enhancement algorithm to improve the speech intelligibility by suppressing both reverberation and background noise. The algorithm adopts a non-causal single-channel minimum variance distortionless response (MVDR) filter to exploit an additional information that is included in the noisy-reverberant signals in subsequent frames. The noisy-reverberant signals are decomposed into the parts of the desired signal and the interference that is not correlated to the desired signal. Then, the filter equation is derived based on the MVDR criterion to minimize the residual interference without bringing speech distortion. The estimation of the correlation parameter, which plays an important role to determine the overall performance of the system, is mathematically derived based on the general statistical reverberation model. Furthermore, the practical implementation methods to estimate sub-parameters required to estimate the correlation parameter are developed. The efficiency of the proposed enhancement algorithm is verified by performance evaluation. From the results, the proposed algorithm achieves significant performance improvement in all studied conditions and shows the superiority especially for the severely noisy and strongly reverberant environment.

Comparison of Acoustic Performance Depending on the Location of Sound Absorptive and Diffuser in Small Auditoriums Using 1/10 Scale Models (1/10 축소모형을 이용한 소공연장의 흡음재와 확산체의 적용위치에 따른 음향성능 비교)

  • Kim, Tae-Hee;Park, Chan-Jae;Park, Ji-Hoon;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.146-156
    • /
    • 2015
  • This study investigated how the location of sound absorptive materials and sound diffusers affects the acoustic performance of small auditoriums. It was conducted for a standard model established with the averaged dimension of 36 auditoriums which had opened since 2000 in Daehak-ro, Seoul. In this study, the installation area of finishing materials was calculated upon a back wall which had the smallest installation effective area of finishing materials. To analyze the changes of acoustic performance according to installation location of finishing materials, experiments were carried out using the 1/10 down scale models for 8 cases which were made by classifying the installation location of ceiling and side wall into the front, middle and rear part.The used acoustic parameters were reverberation time (RT), early decay time (EDT), clarity (C80), definition (D50) and speech transmission index (STI). In result, the index related to the amount of reverberant sound (RT, EDT) showed the great changes when evaluating it through just noticeable difference (JND), but the one related to clarity (C80, D50, STI) hardly indicated the changes. In case to obtain short reverberation time, it was most effective to control reverberation time through the side walls when installing sound absorptive and diffusive materials, and side wall front was the location which could get the shortest reverberation time.

Measurements of absorption coefficients of open-type ceilings using 1:25 scale model reverberation chamber (축척모형을 활용한 개방형 천장의 흡음률 측정)

  • Lee, Hye-Mi;Kim, Yong-Hee;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.683-686
    • /
    • 2007
  • This paper investigates acoustical characteristics of open-type ceilings using 1:25 scale model. The field survey in the existing 15 halls was carried out to figure out the ceiling structure. The components of the open-type ceiling were mainly steel truss structures, duct, catwalk and finishing surfaces. In order to investigate the absorption characteristics of the equipped ceiling, the absorption coefficient measurements were made using 1:25 reverberation chamber based on ISO 354. Results showed that the absorption coefficient of the empty ceiling structure (6m-height) with 50%-perforated covering plate was 0.2-0.3 at above 500 Hz. When steel structure was added inside the empty ceiling, absorption coefficient increased by 0.16 at 250-1kHz. Adding catwalk did not increase the absorption, but adding duct increased the absorption at 1-2kHz. NRC of the equipped ceiling was 0.39, and the absorption characteristics were mainly found at high frequencies. In addition, the opening size of the covering plate did not change the absorption coefficient of the equipped ceiling meaningfully.

  • PDF

A Study on the Reverberation Characteristics of Coupled Spaces (음향적으로 결합된 공간의 잔향특성변화에 관한 연구)

  • Jeong, Dae-Up;Kim, Ji-Young;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the reverberation characteristics of coupled spaces were investigated using a scale model. Two rooms were connected through an acoustically transparent opening known as an aperture. The acoustic characteristics of the coupled room by varying three parameters, the aperture opening size, the absorption ratio between the two rooms and the locations of the secondary room, were measured and analysed. The results indicated that a reverberant secondary room, produced large variations of the acoustics in the main room and an absorptive secondary room was effective to provide systematic control of the acoustics in the main room. The reverberant secondary room should be located at the rear of the stage and the aperture opening ratio over 6.25% produced large variations of the acoustics in the main room. However, the aperture opening ratio over 25% had no effect on variations of the acoustics in the main room. The absorptive secondary room should be located at the rear of the audience areas and the aperture opening ratio over 3.13% produced large variations of the acoustics in the main room.

  • PDF

Design of Room Reverberation Filter by Using 5 DOF Reverberation Model (5자유도 잔향 모델을 이용한 실내 잔향 필터 설계)

  • Kim Sohee;Kim Yang-Hann
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.227-230
    • /
    • 1999
  • 잔향에 대한 인간의 주관적인 지각을 잔향기 설계에 객관적인 수치로써 반영하는 방법으로, 5 자유도 잔향 모델이 제안된 바 있다[1]. 5자유도 잔향 모델은 잔향에 대한 다섯 개의 객관적인 평가량들을 이용하여 시간에 따른 음 에너지 감쇠 곡선을 근사화한 것이다. 즉 5 자유도 잔향 모델을 이용하여 청취자가 원하는 특성을 갖는 잔향을 객관적으로 묘사할 수 있고, 이는 잔향을 합성할 때 잔향 필터의 설계 기준이 된다. 그러나 이 모델로부터 만들 수 있는 잔향 필터의 개수는 실로 무한하고, 그 중에는 인간이 듣기에 부자연스러운 합성음을 만들어 내는 경우도 있다. 즉 자연스러운 잔향을 만들기 위해서는 잔향 모델 외에도 부가적인 잔향 설계 기준이 필요하다. 시간, 주파수 영역에서 대표적인 특성을 갖는 몇 종류의 원음에 대한 청음실험을 통해, 필요한 잔향 설계 기준을 제시한다.

  • PDF

Acoustical design for remodeling of the Little theatre in Sejong Performing Arts Center (세종문화회관 소극장 리모델링을 위한 음향설계)

  • Jeon, Jin-Yong;Lee, Pyoung-Jik;Seo, Choon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.991-996
    • /
    • 2007
  • The Little theater in Sejong Performing Arts Center is a proscenium theater with 447 seats, which was built in 1978. The remodeling of the theater was decided in 2005 and acoustical design was conducted. Design guidelines were suggested based on the feasibility studies and acoustical measurement results. Target reverberation time was set at 1.2-1.6s with respect to the main performances. For the acoustical design, side balconies were added to increase the level of lateral reflections. Acoustic diffusers were designed and scattering coefficients were measured in a 1:10 reverberation chamber. From the results of computer simulation and a 1:10 scale model measurement, it was indicated that the new space will have RT of 1.2-1.6 s in middle frequencies when fully occupied.

  • PDF

Comparison of Sound Insulation Performance between a Simplified Test Apparatus(APAMAT II) and the Reverberation Chamber (간이 차음시험장치(APAMAT II)와 잔향실 차음성능의 비교)

  • 강현주;김봉기;김현실;이경민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.174-177
    • /
    • 2003
  • Comparisons of measuring apparatus for sound insulation are made between a reverberation chamber and a simplified test apparatus(APAMAT II) that is used to measure sound insulation performance of inner panels for automobiles. Also, theoretical prediction by using sandwich model are made in order to compare it with experiments and to consequently provide a design tool. Comparative results show that steel ball excitation in APAMAT II has a serious problem with sound insulation performance at the low frequency region, while speaker excitation gives a good agreements with theoretical prediction.

  • PDF

Measurements of Scattering Coefficients Using the ISO Method in a Model Reverberation Chamber (ISO 방법론을 이용한 축소 잔향실에서의 확산계수 측정)

  • 전진용;이성찬;류종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.162-168
    • /
    • 2003
  • The degree of diffusion, characterized by the "scattering coefficient" of surface materials, has been known to be one of the most important factors in determining the acoustical qualities of concert halls. Based on the suggested ISO method, which measures the random-incidence scattering coefficient of surfaces in a diffuse field, the scattering coefficients of different sizes and densities of wooden hemispheres and cubes were measured in model-scale reverberation rooms. As a result, wooden hemispheres with a structural depth of more than 15㎝ have the highest average (500㎐∼4㎑) scattering coefficient. It was also found that the scattering coefficient becomes higher when the diffuser density reaches about 50% for hemispheres and 30% for cubes.

New Learning Hybrid Model for Room Impulse Response Functions (새로운 학습 하이브리드 실내 충격 응답 모델)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.361-367
    • /
    • 2008
  • Many trials have been used to model room impulse responses, all attempting to provide efficient representations of room acoustics. The traditional model designs for room impulse response seem to fail in accuracy, controllability, or computational efficiency. In the time domain, room impulse responses are generally considered as combination of the three Parts having different acoustic characteristics, initial time delay, early reflection, and late reverberation. This paper introduces new learning hybrid model for room impulse responses. In this proposed model, those three parts are modeled using different models with learning algorithms that determine the boundary of each model in the hybrid model. By the simulation with measured room impulse responses, the performance of proposed model shows the best efficiency in views of computational burden and modeling error.