믹싱의 기술적인 측면에서 가장 해결하기 어려웠던 부분 중에 하나가 바로 보컬(목소리) 이다. 악기와 달리 보컬은 각각 가수들마다 너무 나 다른 톤, 즉 색깔 때문에 공통의 수치를 적용하기도 어려울뿐더러 여러 이펙터를 적절히 배합해야 하기 때문에 매우 힘든 작업이었다. 본 논문은 그중에서도 가장 대표적인 보컬이펙터인 리버브의 개념과, 현황, 사용방법에 대해 학생들이 가장 많이 사용하는 이펙터 중에 하나인 Wave Renaissance Reverb 를 사용하여 효과적인 보컬 리버브 사용에 관한 제안을 해보도록 하겠다. 가요 믹싱에서 가장 중요한 부분은 보컬의 목소리를 어떻게 만들어 주는지가 관건이다. 소리의 공간감은 음악을 더욱 더 아름답게 만들어주기 때문에 보컬이펙터로서 리버브의 역할은 절대적이다. 컴퓨터기술은 음악을 더욱 손쉽게 만들 수 있게 해주었으나 정해진 프리셋만을 사용하게 하는 등 개개인의 기술능력이 떨어지는 부작용을 낳았다. 보다 더 더 세밀한 노력을 통한 뮤지션들의 리버브 연구는 결국 좋은 음악을 창출해 낼 수 있을 것이다.
This thesis describes the method for well voice announcement using the TTS(Text-To-Speech) technology in the shop music broadcasting service. Offering a high quality TTS sound service for each shop requires a great expense. According to a report on the architectural acoustics the room acoustic indexes such as reverberation time and early decay time are closely connected with a subjective awareness about acoustics. By using the result the customers will be able to recognize better the voice announcement by applying sound effect to speech files made by TTS. The result of an aural comprehension examination has shown better about almost all of the parameters by applying reverb effect to TTS sound.
음악 제작 과정의 마지막 단계는 마스터링이다. 과거의 마스터링은 단순히 컴프레서(Compressor)와 리미터(Limiter)를 이용하여 각 트랙의 오디오 레벨을 일률적으로 매칭시키는 것이었지만, 디지털 장비의 꾸준한 발전으로 많은 마스터링 제작자들은 이퀄라이저(Equalizer)와 컴프레서를 기본으로 리버브(Reverb), 딜레이(Delay), 그리고 디더(Dither)를 이용하여 모든 트랙을 하나의 통일된 분위기로 제작하는 방식으로 진보하고 있다.
영화나 VR 콘텐츠 제작 시 음향에 잔향 효과를 주는 것은 현장감과 생동감을 느끼게 하는데 매우 중요한 요소이다. 공간에 따른 음향의 잔향 시간은 RT60(Reverberation Time 60dB)이라는 표준에서 권고된다. 본 논문에서는 음향 편집 시 자동 잔향 편집을 위한 장면 인식 기법을 제안한다. 이를 위해 컬러 이미지와 예측된 깊이 이미지를 동일한 모델에 독립적으로 학습하는 분류 모델을 설계하였다. 실내 장면 분류는 내부 구조가 유사한 클래스가 존재하여 컬러 정보 학습만으로는 인식률의 한계가 존재한다. 공간의 깊이 정보를 사용하기 위해 딥러닝 기반의 깊이 정보 추출 기술을 사용하였다. RT60을 기반으로 총 10개의 장면 클래스를 구성하고 모델 학습 및 평가를 진행하였다. 최종적으로 제안하는 SCR+DNet(Scene Classification for Reverb+Depth Net) 분류기는 92.4%의 정확도로 기존의 CNN 분류기들보다 더 높은 성능을 달성하였다.
Although deep neural network-based acoustic models have greatly improved the performance of automatic speech recognition (ASR), reverberation still degrades the performance of distant speech recognition in indoor environments. In this paper, we adopt the DenseNet, which has shown great performance results in image classification tasks, to improve the performance of reverberant speech recognition. The DenseNet enables the deep convolutional neural network (CNN) to be effectively trained by concatenating feature maps in each convolutional layer. In addition, we extend the concept of multi-resolution CNN to multi-resolution DenseNet for robust speech recognition in reverberant environments. We evaluate the performance of reverberant speech recognition on the single-channel ASR task in reverberant voice enhancement and recognition benchmark (REVERB) challenge 2014. According to the experimental results, the DenseNet-based acoustic models show better performance than do the conventional CNN-based ones, and the multi-resolution DenseNet provides additional performance improvement.
음악은 수많은 악기가 내는 사운드로 구성되어 있다. 그 중에서도 사람의 목소리인 '보컬' 사운드는 그 어떤 악기보다도 가장 즉각적으로 잘 인지되는 파트이다. 곡에서 중요한 부분을 차지하는 보컬을 여러 사운드 속에서 완벽하게 믹싱하는 데에는 많은 요소들이 고려되어야 하고 또 다양한 단계들이 존재한다. 그 단계 중 EQ에 집중하여 연구하고자 한다. 따라서 본 논문에서는 EQ작업과 관련된 사항들에 대해 EQ의 개념 및 종류로 부터 시작해 보컬 레코딩 시 EQing방법, Subtractive EQ, Additive EQ 등에 관해 알아보도록 할 것이다. EQ는 사운드 믹싱 과정에서 특히나 보컬 사운드를 다루는데 있어서 가장 중요한 도구 중 하나로 손꼽힌다. 보컬 이큐잉은 보컬이 완벽히 트랙 믹스 안에 어우러지게 하기 위해 각 주파수 대역을 부스트 하고 또 컷팅하여 음색을 다듬는 과정이다. 프로페셔널한 보컬사운드를 얻기 위해서는 그 무엇보다도 자신이 스타일적으로 의도하는 사운드가 무엇인지 확실한 방향성을 가지고 가야하고 그를 위해 레퍼런스 트랙을 이용하는 것도 아주 효과적이다. EQing이외에도 컴프레션, 리버브, 코러스, 딜레이 등의 이펙터 작업과 백킹 보컬과 하모니의 조정 등의 다양한 복잡한 단계의 작업이 있고 그 또한 매우 중요한 작업들이다. 그러나 믹싱의 시작에 해당하는 작업인 EQing은 무엇보다도 그 중요도가 큰 관계로 위 사항들을 두루 고려하여 세밀한 작업을 하여야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.