• Title/Summary/Keyword: Return water

Search Result 526, Processing Time 0.031 seconds

Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling (수리·수문해석 모델을 활용한 농업용수 회귀수량 추정)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Yoon, Dong-Hyun;Yang, Mi-Hye;Jung, In-Kyun;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Characteristics of Irrigation Return Flow in a Reservoir Irrigated District (저수지 관개지구의 농업용수 회귀 특성 분석)

  • Song, Jung Hun;Song, Inhong;Kim, Jin-Taek;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • The objective of this study was to investigate characteristics of irrigation return flow from paddy block in a reservoir irrigated district during growing seasons. The irrigation return flow was divided into three parts, quick return flow from irrigation canal (RFI), quick return flow from drainage canal (RFD), and delayed return flow (DRF). The RFI was calculated from water level and stage-discharge relationships at the ends of the irrigation canals. The DRF was estimated using measured infiltration amount from paddy fields of the irrigated district. A combined monitoring and modeling method was used to estimate the RFD by subtracting surface runoff from surface drainage. The paddy block irrigated from the Idong reservoir was selected to study the irrigation return flow components. The results showed that daily agricultural water supply (AWS), the RFI, and the RFD were $27.4mm\;day^{-1}$, $4.9mm\;day^{-1}$, and $19.8mm\;day^{-1}$, respectively in May, which were greater than other months (p<0.05). The return flow ratio of the RFI and the RFD were the greatest in July (34.6%) and May (72.3%), respectively. The daily AWS was closely correlated with the RFD (correlation coefficients of 0.76~0.86) in except for July with, while correlation coefficient with the RFI were 0.56 and 0.42 in June and July, respectively (p<0.01). The total irrigation return flow was 1,965 mm in 2011, and 1,588 mm in 2012, resulting in total return flow ratio of 84.6% and 79.1%, respectively. This results indicate that substantial amounts of agricultural water were returned to streams as irrigation return flow. Thus, irrigation return flow should be fully considered into the agricultural water resources planning in Korea.

Irrigation Return Flow Measurements and Analysis in a Small Size Paddy Area (소규모 논지대의 관개회귀수량 실측조사 및 분석)

  • Chung, Sang-Ok;Park, Ki-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.517-526
    • /
    • 2004
  • Agricultural water plays an important role in the national water management. Irrigation return flow is the amount of irrigated water that returns to the river system. In the water resources development planing and management, an accurate estimation of the irrigation return flow is very important. In this study, a 5.5 ha small size paddy area in Kyungbuk province is selected and the water balance components are measured during the 2003 growing season. The total irrigation return flow ratio was 53.7%, of which 30.2% was rapid return flow and 23.5% was delayed return flow.

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

Estimation of Return Flow Rate of Irrigation Water in Daepyeong Pumping District (대평 양수장 지구의 농업용수회귀율 추정)

  • Kim, Tai-Cheol;Lee, Ho-Choun;Moon, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Return flow rate of irrigation water was estimated by water balance method. Daepyeong pumping district to irrigate 75.8 ha of rice paddy in the Geum river basin was selected to install gauging instruments to collect data such as weather, water levels, infiltration rate and evapotranspiration during irrigation season (May 27 to Sept. 20) in 2003 and 2004. Irrigation and drainage discharge were calculated from the rating curve and evapotranspiration was estimated both by the modified Penman formula and by the lysimeter. The results were as followed : 1. Total amounts of pumping water during irrigation season were $1,076,000\;m^3$ in 2003 and $1,848,000\;m^3$ in 2004. Total amounts of rainfall were 1336.0mm and 1003.0mm respectively during the irrigation season in 2003 and 2004. 2. It was surveyed that the amount of infiltration was 196.5 mm (2.2 mm/day). The gauged evapotranspiration was 311.0 mm (3.5 mm/day) and the calculated evapotranspiration was 346.0 mm (3.9 mm/day) during irrigation period in 2003. It was surveyed that the amount of infiltration was 169.9 mm (2.4 mm/day). The amount of gauged evapotranspiration was 377.3 mm (5.3 mm/day) and the calculated evapotranspiration was 454.5 mm (6.6 mm/day) during irrigation period in 2004. 3. The rates of quick and delayed return flow were 52.4 % and 17.7 % respectively, and so return flow rate was 70.1 % in 2003. The rates of quick and delayed return flow were 45.4 % and 16.1 % respectively, and so return flow rate was 61.5 % in 2004. It means that average return flow rate in the Daepyeong pumping district was assumed to be 65 %.

Analysis of Flooding Discharge in Seoul-Metropolitan Area based on Return Periods

  • Ang Peng;Seong Cheol Shin;Quan Feng;Junhyeong Lee;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.349-349
    • /
    • 2023
  • In recent years, urban floods have become more frequent, causing significant harm to society and resulting in substantial losses to the national economy and people's lives and property. To assess the impact of floods on people's safety and property in Seoul, annual precipitation data from 1980 to 2020 was analyzed for return periods of 5, 10, 20, 50, and 100 years. A rainfall runoff simulation model for Seoul was established using HEC-HMS and HEC-RAS models. The study revealed that at a 5-year return period, water began to accumulate in Seoul, but it was not severe. However, at a 10-year return period, the water accumulation was relatively serious, and inundation began to occur. At a 20-year return period, there was serious water accumulation and inundation in Seoul. During a 50-year return period, Seoul suffered from severe inundation in commercial areas, resulting in substantial losses to the local economy. The findings indicate that Seoul City faces high flood risks, and measures should be taken to mitigate the impact of floods on the city's residents and economy.

  • PDF

Applicability of the DAWAST Model Considered Return flows (용수 수요를 고려한 DAWAST 모형의 적용성 평가)

  • Noh, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1097-1107
    • /
    • 2003
  • The DAWAST model was originally developed to consider the variation of water storage in the unsaturated soil zone and it is a conceptual lumped model. Return flows from agricultural, domestic and industrial water were included to the original result of model simulation to calibrate model parameters of watershed runoff. Agricultural water demand was estimated only in paddy fields supposing that return flow responded at stream was originated from paddy fields. Domestic and industrial water demand was estimated by average daily water demand multiplied monthly variation coefficient. Daily inflow to the Daechung multipurpose dam was applied to verify the DAWAST model considered return flows. On annual average from 1983 to 2001, inflows were simulated to 652.5 mm with return flows considered, which was approached more closer to observed inflow of 667.3 mm, compared with case of 606.8 mm with return flows not considered.

Estimation of the Irrigation Return Flow of Pumped Water in the Keum River Watershed (금강유역 양수장지구의 농업용수 회귀량 산정)

  • 김영식;박정남;안병기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.105-110
    • /
    • 1999
  • Unused irrigation water due to delievery losses and management losses. and ground water releases from infiltration in the paddy irrigation system are eventually returned to the stream. They are called as irrigation return flow. It affects the discharge of drought flow in the down strenamflow. And it may contain chemicals, and threaten streamflow quality . Thus, the accurage estimation of irrigation return flow is important to the streamflow modeling and water resources planning , and also to the control of agriculutral nonpoint source pollution . The irrigation return flow of pumped water was investigated in the Keum river watershed.

  • PDF

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.