• 제목/요약/키워드: Return period wind speed

검색결과 29건 처리시간 0.021초

강도설계용 풍하중 평가를 위한 재현기간과 기본풍속지도의 제안 (Proposal of Return Period and Basic Wind Speed Map to Estimate Wind Loads for Strength Design in Korea)

  • 하영철
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.29-40
    • /
    • 2018
  • Strength design wind loads for the wind resistance design of structures shall be evaluated by the product of wind loads calculated based on the basic wind speed with 100 years return period and the wind load factor 1.3 specified in the provisions of load combinations in Korean Building Code (KBC) 2016. It may be sure that the wind load factor 1.3 in KBC(2016) had not been determined by probabilistic method or empirical method using meteorological wind speed data in Korea. In this paper, wind load factors were evaluated by probabilistic method and empirical method. The annual maximum 10 minutes mean wind speed data at 69 meteorological stations during past 40 years from 1973 to 2012 were selected for this evaluation. From the comparison of the results of those two method, it can be found that the mean values of wind load factors calculated both probability based method and empirical based method were similar at all meteorological stations. When target level of reliability index is set up 2.5, the mean value of wind load factors for all regions should be presented about 1.35. When target level of reliability index is set up 3.0, wind load factor should be presented about 1.46. By using the relationship between importance factor(conversion factor for return period) and wind load factor, the return periods for strength design were estimated and expected wind speeds of all regions accounting for strength design were proposed. It can be found that return period to estimate wind loads for strength design should be 500 years and 800 years in according to target level of reliability index 2.5 and 3.0, respectively. The 500 years basic wind speed map for strength design was suggested and it can be used with a wind load factor 1.0.

최근 기상 자료에 의한 부산의 세분화된 지역별 재현기대 풍속 산정 (Estimation of Wind Speeds for Return Period in Cellularized District of Basan by the Recent Meteorological Data)

  • 안재혁
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.158-163
    • /
    • 2012
  • This study is concerned with the estimation of wind speeds for return period in cellularized district of Busan by the recent meteorological data. Recently standard of the wind load in Busan area is determined by using meteorological wind speed data which is observed on Automated Synoptic Observing System(ASOS) only. Applying the existing basic wind speed that is 40m/s to the construction design of Busan area is inefficient. Because the wind speeds of Busan area show different amounts depend on the location of cellularized district. This research analyze the observed data of wind speeds of cellularized district in Busan based on Automate Weather System(AWA). In addition that we compute regional wind speeds for return period by using Gumbel distribution and study and compare with the existing basic wind speeds after evaluating appropriateness by Hazen's plot method.

The conditional risk probability-based seawall height design method

  • Yang, Xing;Hu, Xiaodong;Li, Zhiqing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1007-1019
    • /
    • 2015
  • The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

서남해안 장대교량에 적합한 설계 풍속 산정 (Estimation of Design Wind Speed Compatible for Long-span Bridge in Western and Southern Sea)

  • 김한수;이현호;조두용;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.153-160
    • /
    • 2011
  • 최근들어 사장교나 현수교와 같은 케이블 형식의 장대교량이 많이 건설되거나 계획중에 있다. 하지만 도로교 설계기준에 제시된 풍하중 산정시 중요한 요인인 기본풍속 산정함에 있어서 1995년까지 측정된 풍속자료를 근거로 한 일반교량에 적합한 풍속을 명시하고 있어 장대교량에 적합한 풍속에 대한 재검토가 필요한 상황이다. 본 연구에서는 태풍의 빈도가 높고 대부분의 장대교량이 건설되고 있는 서남해안지역으로 구체화하였다. 풍하중기준과 같이 극치I형분포(Gumbel분포)에 의해 일반교량에 적용할 100년, 장대교량에 적용할 200년 재현기대풍속을 적률법과 최소자승법의 두 가지 방법으로 추정하고, 극한 상황인 해상에서 불어오는 풍속으로 보정하여 지상풍속보다 약 17%정도 큰 값을 추정하였다. RMS error 방법에 의해 재현기대풍속의 적합성을 평가한 결과 최소자승법이 서남해안지역의 경우 적합성이 우수하였다.

Meteorological basis for wind loads calculation in Croatia

  • Bajic, Alica;Peros, Bernardin
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.389-406
    • /
    • 2005
  • The results of reference wind speed calculation in Croatia as a base for the revision of the Croatian standards for wind loads upon structures are presented. Wind speed averaged over 10 minutes, at 10 m height, in a flat, open terrain, with a 50-year mean return period is given for 27 meteorological stations in Croatia. It is shown that the greatest part of Croatia is covered with expected reference wind speeds up to 25 m/s. Exceptions are stations with specific anemometer location open to the bura wind which is accelerated due to the channelling effects of local orography and the nearby mountain passes where the expected reference wind speed ranges between 38 m/s and 55 m/s. The methodology for unifying all available information from wind measurements regardless of the averaging period is discussed by analysing wind speed variability at the meteorological station in Hvar.

Improved first-order method for estimating extreme wind pressure considering directionality for non-typhoon climates

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.473-482
    • /
    • 2020
  • The first-order method for estimating the extreme wind pressure on building envelopes with consideration of the directionality of wind speed and wind pressure is improved to enhance its computational efficiency. In this improved method, the result is obtained directly from the empirical distribution of a random selection of annual maximum wind pressure samples generated by a Monte Carlo method, rather than from the previously utilized extreme wind pressure probability distribution. A discussion of the relationship between the first- and full-order methods indicates that when extreme wind pressures in a non-typhoon climate with a high return period are estimated with consideration of directionality, using the relatively simple first-order method instead of the computationally intensive full-order method is reasonable. The validation of this reasonableness is equivalent to validating two assumptions to improve its computational efficiency: 1) The result obtained by the full-order method is conservative when the extreme wind pressure events among different sectors are independent. 2) The result obtained by the first-order method for a high return period is not significantly affected when the extreme wind speeds among the different sectors are assumed to be independent. These two assumptions are validated by examples in different regions and theoretical derivation.

최신 풍속자료를 반영한 기본풍속 산정 (Estimation of Basic Wind Speeds Reflecting Recent Wind Speed Data)

  • 최상현;서경석;성익현;이수형
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.9-14
    • /
    • 2010
  • 최근 기후변화로 인해 태풍강도가 강화됨과 동시에 빈도가 늘어나는 추세이나, 설계기준에 제시된 풍하중 산정식은 1990년대 중반까지 측정된 풍속자료를 근거로 하고 있어 재검토가 필요한 상황이다. 이 논문에서는 1961년부터 2008년까지 전국 76개 관측소에서 측정된 풍속자료를 기초로 통계적 수법을 이용하여 건물, 교량 등 토목구조물의 내풍설계에 적용할 수 있는 기본풍속을 산정하였다. 풍속의 재현기대값은 Gumbel의 적률법에 의해 구하였으며, 풍속측정 지점의 100년 재현기대값을 근거로 지역별 기본풍속을 제안하였다. 지역별로 구해진 결과는 기존의 연구결과 및 설계기준에 제시된 값과의 비교를 통하여 검토하였으며, 설계에 적용할 수 있도록 주요지역의 설계기본풍속을 4개 권역으로 구분하여 제시하였다.

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

재해석자료를 이용한 한반도 해상의 기준풍속 추정 (Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets)

  • 김현구;김보영;강용혁;하영철
    • 신재생에너지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

HAZARD ANALYSIS OF TYPHOON-RELATED EXTERNAL EVENTS USING EXTREME VALUE THEORY

  • KIM, YOCHAN;JANG, SEUNG-CHEOL;LIM, TAE-JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.59-65
    • /
    • 2015
  • Background: After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. Methods: To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. Results: The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. Conclusion: A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.