• Title/Summary/Keyword: Return Temperature

Search Result 255, Processing Time 0.026 seconds

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Suggestion of New Heat Tariff Assessment for District Heating Using Exergy (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Jung-Hwan;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.912-918
    • /
    • 2008
  • In this study, the exergy which could be reflected on energetic and economic value was used to assess on heat tariff of district heating system instead of enthalpy. Exergy is difficult to apply directly to present heat charge system because of complex calculation. Therefore, the difference between supply and return temperature was converted to the exergy temperature difference for easily calculating the amount of heat. As a result of exergy analysis for a DH substation, the exergy temperature difference were not affected on surrounding temperature and pressure loss. Supply temperature, maximum difference between supply temperature and return temperature had a main effect on the exergy temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with previous heat charge. Heat charges in other seasons were almost same. It is thought that heat tariff using exergy will be appropriate in terms of both DH supplier and consumer.

  • PDF

Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Junghwan;Yoo, Hoseon;Lee, Jae-Heon;Moon, Seungjae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.

Measurement and Simulation of Heating Energy for Apartments with District Heating (지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션)

  • Lee, Eun Ju;Lee, Doo Young;Hong, Hiki;Kim, Young Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.

Design and Characterization of HTS antenna array with sequential rotation array (순차적 순환배열을 이용한 고온초전도 배열 안테나 설계 및 특성해석)

  • Chung, D.C.;Hwang, J.S.;Kim, Y.M.;Choi, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-81
    • /
    • 2006
  • We report the performance of a four-element, 11.67 GHz, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from $YBa_2Cu_3O_{7-x}$ (YBCO) superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at room temperature and at cryogenic temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

  • PDF

Study on HTS Antenna Array with Circularly Polarization for DBS Receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나 관한 연구)

  • 정동철;윤창훈;최효상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.776-781
    • /
    • 2004
  • We report the performance of a four-element, 11.67 GHz, $high-{T}_c$ superconducting (HTS) microstrip antenna array with corporate feed network. The HTS antenna array used in this work had a circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from ${YBa}_2{Cu}_3{O}_7-x(YBCO)$ superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at cryogenic temperature and room temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

Estimation of the thermal performance on the double slab floor with supplying air (급기가 되는 이중바닥 구조체의 열 성능 평가)

  • Cha, Kwang-Seok;Park, Myung-Sig;Lee, Dae-Woo;Nam, Woo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.866-871
    • /
    • 2006
  • Recently according to the fashion of well-being, the case study of under floor heating system type for residential space is increasing. Specially double slab floor system can make several roles as reducing the acoustic noises and also supplying fresh air through the gap. So in present study floor heating performance was examined with various location of the space in the case of floor supply air and ceiling supply air. In both cases return air went out through ceiling opening. As one of the result is that when using the heat pipe type floor heating system the temperature difference between supply and return water was $15.2^{\circ}C$, but in case of commercial type floor heating system the temperature difference was $5.3^{\circ}C$ when the supply water temperature was $50^{\circ}C$.

  • PDF

Estimation of the Periodic Extremes of Minimum Air Temperature Using January Mean of Daily Minimum Air Temperature in Korea (1월 일최저기온 평균을 이용한 한국의 재현기간별 일 최저기온 극값 예측)

  • Moon, Kyung Hwan;Son, In Chang;Seo, Hyeong Ho;Choi, Kyung San
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.155-160
    • /
    • 2012
  • This study was conducted to develop a practical method for estimating the extremes of minimum air temperature with given return-period based on the frequency distribution of daily minimum air temperature in January. Daily temperature data were collected from 61 meteorological observatories country-wide from 1961 to 2010. Most of daily minimum temperature in January could be represented by a normal-distribution, so it is possible to predict stochastically the lowest temperature by the mean and standard deviation. We developed a quadratic function to estimate standard deviation in terms of daily minimum temperature in January. Also, we introduced a coefficient which can be used to predict an extreme of minimum temperature with mean and standard deviation, and is dependent on return-periods. Using this method, we were able to reproduce the past 30-year extremes with an error of 1.1 on average and 5.3 in the worst case.

Heat Flow Characteristics of Traditional Ondol (Gudle) by Numerical Analysis (수치해석을 통한 구들의 열 흐름 특성 연구)

  • Rhee, Shin-Ho;Rhee, Gwang-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The heat flow characteristics of the Gudle (traditional Ondol) used a lot at farm houses have been performed with variations of Bunengki (Fireridge) by numerical analysis and field experiment. The Doedon-Gorae (Return-Firetunnel) Gudle is analyzed among the structure of Gudle. The distribution of heat flow in Gorse (Firetunnel) and the temperature distribution in floor of 3 Buneomgi (Fire ridge) was more uniform than that of 1 Buneomgi. The heat efficiency of 3 Buneomgi was higher than that of 1 Bunengki. That is, the 3 Bunengk is more efficient and more uniform temperature.

A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904 (1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.