• 제목/요약/키워드: Return Channel Vanes

검색결과 4건 처리시간 0.018초

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

다단 원심펌프 임펠러의 개량 수력설계 (Impeller Redesign of Multi-stage Centrifugal Pumps)

  • 오종식;김동수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.177-184
    • /
    • 2001
  • For two kinds of the multi-stage centrifugal pump with diffuser vanes and return channel vanes the meanline performance prediction is applied to get information of hydraulic performance at each internal flow station, because only flange-to-flange test curves are available. As a first step of redesign fur higher efficiency, the impeller geometry is numerically investigated in the present study. Quasi-3D inviscid loading distributions are obtained, for the two impellers, using the state-of-the-art method of impeller 3D design, which provides a guide to optimal redesign. Full 3D turbulent flow fields are thereafter analyzed, using the specialized CFD code, to confirm the redesign results. The inherent limitation of the traditional graphic method of impeller design, which most of domestic pump manufacturers are now employing, is found.

  • PDF

고압 다단 펌프의 레이디얼 디퓨저에 대한 연구 (Study on the Radial Diffuser of Multistage High Pressure Pump)

  • 김덕수;산자르;박원규
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.727-736
    • /
    • 2016
  • 본 연구에서는 복합화력 화력 발전소용 고압 다단펌프의 레이디얼 디퓨저 형상에 따른 펌프의 성능(양정, 효율)변화를 수치 해석적으로 분석하였다. 레이디얼 디퓨저 설계 변수는 크게 디퓨저 베인수, 디퓨저 외경비($D_4/D_3$), 리턴채널 출구각도(${\alpha}_6$), 압력회복계수($C_p$) 등으로 선정하였다. 수치해석 결과 디퓨저 외경비가 큰 경우 양정 및 효율이 가장 크게 예측되었으며, 리턴채널의 출구각도(${\alpha}_6$)가 60도인 경우 디퓨저 출구에서의 Pre-Swirl로 인해 출구각도가 90도인 것에 비해 양정이 저하되는 것을 알 수 있다.

1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 - (Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis-)

  • 조규식;이헌석;손정락
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.