• Title/Summary/Keyword: Retinex transform

Search Result 7, Processing Time 0.049 seconds

Comparative Study on Illumination Compensation Performance of Retinex model and Illumination-Reflectance model (레티넥스 모델과 조명-반사율 모델의 조명 보상 성능 비교 연구)

  • Chung, Jin-Yun;Yang, Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.936-941
    • /
    • 2006
  • To apply object recognition techniques to real environment, illumination compensation method should be developed. As effective illumination compensation model, we focused our attention on Retinex model and illumination-Reflectance model, implemented them, and experimented on their performance. We implemented Retinex model with Single Scale Retinex, Multi-Scale Retinex, and Retinex Neural Network and Multi-Scale Retinex Neural Network, neural network model of Retinex model. Also, we implemented illumination-Reflectance model with reflectance image calculation by calculating an illumination image by low frequency filtering in frequency domain of Discrete Cosine Transform and Wavelet Transform, and Gaussian blurring. We compare their illumination compensation performance to facial images under nine illumination directions. We also compare their performance after post processing using Principal Component Analysis(PCA). As a result, illumination Reflectance model showed better performance and their overall performance was improved when illumination compensated images were post processed by PCA.

Finger Tip Recognition Algorithm in Digital Micromirror System (디지털 마이크로 미러 시스템에서의 손끝 인식 알고리즘)

  • Choi, Jong-ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2016
  • A digital micromirror system was proposed for future smart learning. This system is the compact micro-projector with a built-in CMOS sensor modules. It can provide the various interfaces. The basis of interface is to recognize the finger tip on projected image. But the recognition rate of finger tip is very low due to various image degradations. In this paper, we propose the finger tip recognition algorithm that minimize the image degradation factors by using the Retinex transform and IR structuring light. By verifying the availability of the algorithm through experiment, the performance of finger tip recognition was confirmed. Therefore, the user interface can be able to be enhanced significantly in DMS.

A HDR Up-scaling Algorithm Using Undecimated Wavelet Transform and Retinex Method (비간축 웨이브릿 변환과 레티넥스 기법을 이용한 HDR 업스케일링 알고리즘)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1395-1403
    • /
    • 2022
  • Lately, over 4K high definition and high dynamic range (HDR) display devices are popularized, various interpolation and HDR methods have been researched to expand the size and the dynamic range. Since most of the legacy low resolution (LR) images require both an interpolation and a HDR tone mapping methods, the two processes should be subsequently applied. Therefore, the proposed algorithm presents a HDR up-scaling algorithm using undecimated wavelet transform and Retinex method, which transfers a LR image of low dynamic range (LDR) into the high resolution (HR) with HDR. The proposed algorithm consists of an up-scaling scheme increasing the image size and a tone mapping scheme expanding the dynamic range. The up-scaling scheme uses the undecimated version of the simplest Haar wavelet analysis for the 8-directional interpolation and the change region is extracted during the analysis. This region information is utilized in controlling the surround functions' size of the proposed tone mapping using MSRCR, to enhance the pixels of around the edges that are dominant feature of the subjective image quality. As the results, the proposed algorithm can apply an up-scaling and tone mapping processes in accordance with the type of pixel.

Illumination Normalization Method for Robust Eye Detection in Lighting Changing Environment (조명변화에 강인한 눈 검출을 위한 조명 정규화 방법)

  • Xu, Chengzhe;Islam, Ihtesham Ul;Kim, In-Taek
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.955-956
    • /
    • 2008
  • This paper presents a new method for illumination normalization in eye detection. Based on the retinex image formation model, we employ the discrete wavelet transform to remove the lighting effect in face image data. The final result based on the proposed method shows the better performance in detecting eyes compared with previous work.

  • PDF

An Adaptive Image Enhancement of the DCT Compressed Image using the Spatial Frequency Property (공간주파수 특성을 이용한 DCT 압축영상의 적응 영상 향상)

  • Jeon, Seon-Dong;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.104-111
    • /
    • 2010
  • This paper presents an adaptive image enhancement method using the spatial frequency property in the DCT(discrete cosine transform) compressed domain. The dc coefficients, the illumination components of image, are adjusted to compress the dynamic range of image, and the ac coefficients are modified to enhance the contrast by using the human visual system(HVS) and the spatial frequency property. The ac coefficients are separated into vertical direction, horizontal direction, and mixed spatial frequency components, and adaptively modified to minimize the block artifacts that possibly occur in the image enhancement. The proposed method using dynamic range compression and adaptive contrast enhancement shows the advanced performance without the block artifact compared with existing method.

Human Visual System based Automatic Underwater Image Enhancement in NSCT domain

  • Zhou, Yan;Li, Qingwu;Huo, Guanying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.837-856
    • /
    • 2016
  • Underwater image enhancement has received considerable attention in last decades, due to the nature of poor visibility and low contrast of underwater images. In this paper, we propose a new automatic underwater image enhancement algorithm, which combines nonsubsampled contourlet transform (NSCT) domain enhancement techniques with the mechanism of the human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold denoising technique to suppress underwater noise. Our proposed algorithm incorporates the luminance masking and contrast masking characteristics of the HVS into NSCT domain to yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. The second one is a gain function which modifies the lowpass subband coefficients to adjust the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image denoising and edge sharpening automatically and simultaneously. Experimental results illustrate that our proposed algorithm has better enhancement performance than state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In addition, our algorithm can automatically achieve underwater image enhancement without any parameter tuning.

Color Image Rendering using A Modified Image Formation Model (변형된 영상 생성 모델을 이용한 칼라 영상 보정)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.