• Title/Summary/Keyword: Retinanet

Search Result 3, Processing Time 0.015 seconds

Development of Python-based Annotation Tool Program for Constructing Object Recognition Deep-Learning Model (물체인식 딥러닝 모델 구성을 위한 파이썬 기반의 Annotation 툴 개발)

  • Lim, Song-Won;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • We developed an integrative annotation program that can perform data labeling process for deep learning models in object recognition. The program utilizes the basic GUI library of Python and configures crawler functions that allow data collection in real time. Retinanet was used to implement an automatic annotation function. In addition, different data labeling formats for Pascal-VOC, YOLO and Retinanet were generated. Through the experiment of the proposed method, a domestic vehicle image dataset was built, and it is applied to Retinanet and YOLO as the training and test set. The proposed system classified the vehicle model with the accuracy of about 94%.

Development of Python-based Annotation Tool Program for Constructing Object Recognition Deep-Learning Model (물체인식 딥러닝 모델 구성을 위한 파이썬 기반의 Annotation 툴 개발)

  • Lim, Songwon;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.162-164
    • /
    • 2019
  • 본 논문에서는 물체인식 딥러닝 모델 생성에 필요한 라벨링(Labeling)과정에서 사용자가 다양한 기능을 활용하여 효과적인 학습 데이터를 구성할 수 있는 GUI 프로그램을 구현했다. 프로그램의 인터페이스는 파이썬 기반의 GUI 모듈인 Tkinter 를 활용하여, 실시간으로 이미지 데이터를 수집할 수 있는 크롤링(Crawling)기능과 미리 학습된 Retinanet 을 통해 이미지 데이터를 인식함으로써 자동으로 주석(Annotation) 과정을 수행할 수 있는 기능을 구성했다. 또한, 수집한 이미지 데이터를 다양한 효과와 노이즈, 변형 등으로 Augmentation 기능을 추가함으로써, 사용자가 모델을 학습하기 위한 데이터 전처리 단계를 하나의 GUI 프로그램에서 수행할 수 있도록 했다. 또한 사용자가 직접 학습한 모델을 추정 모델(Inference Model)로 변환하여 프로그램에 입력할 수 있도록 설계한다.

  • PDF

X-Ray Security Checkpoint System Using Storage Media Detection Method Based on Deep Learning for Information Security

  • Lee, Han-Sung;Kim Kang-San;Kim, Won-Chan;Woo, Tea-Kun;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1433-1447
    • /
    • 2022
  • Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.