• 제목/요약/키워드: Retinal Vessel Segmentation

검색결과 5건 처리시간 0.017초

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • 제8권2호
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.

SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation

  • Hwang, Dong-Hwan;Moon, Gwi-Seong;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.29-37
    • /
    • 2021
  • 본 논문에서는 안저영상의 다중 스케일 정보를 다루기 위한 딥러닝 기반의 망막 혈관 분할 모델을 제안한다. 제안 모델은 이미지 분할 딥러닝 모델인 U-Net과 선택적 커널 합성곱을 통합한 합성곱 신경망으로 안저영상에서 눈과 관련된 질병을 진단하는데 중요한 정보가 되는 망막 혈관의 다양한 모양과 크기를 갖는 특징 정보를 추출하고 분할한다. 제안 모델은 일반적인 합성곱과 선택적 커널 합성곱으로 구성된다. 일반적인 합성곱 층은 같은 크기 커널 크기를 통해 정보를 추출하는 반면, 선택적 커널 합성곱은 다양한 커널 크기를 갖는 브랜치들에서 정보를 추출하고 이를 분할 주의집중을 통해 적응적으로 조정하여 결합한다. 제안 모델의 성능 평가를 위해 안저영상 데이터인 DRIVE와 CHASE DB1 데이터셋을 사용하였으며 제안 모델은 두 데이터셋에 대하여 F1 점수 기준 82.91%, 81.71%의 성능을 보여 망막 혈관 분할에 효과적임을 확인하였다.

딥러닝 기법을 이용한 망막 혈관 분할 (Retinal Blood Vessel Segmentation using Deep Learning)

  • 김범상;이익현
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.77-82
    • /
    • 2019
  • 당뇨망막증은 망막의 말초혈관에 순환장애가 일어나 발생하는 당뇨병의 합병증으로, 이를 진단하기 위하여 미세혈관류를 분할하였다. 기존 필터와 특징을 사용한 혈관분할은 두꺼운 혈관은 비교적 잘 분할을 하나, 미세한 혈관에 대해서는 정확도가 떨어진다는 단점이 있다. 그리하여 전처리로 노이즈 제거를 위한 필터, 영상 대비를 위한 히스토그램 평활화를 사용하였으며, 픽셀 단위 분할을 위해 딥러닝 기법을 이용하였다. 기존 방법의 정확도는 90% ~ 94%이며, 제안한 방법의 정확도는 95%이다. 결과 영상에서 시신경 유두 및 삼출몰 주변에서 분할 오류가 나타나는 문제점이 있으나, 이는 네트워크 깊이가 얕음에 의한 오류로 향후 네트워크 변경을 통해 정확도를 개선할 수 있다.

망막혈관 검출을 위한 영상분할기법 (Survey of Image Segmentation Algorithms for Extracting Retinal Blood Vessels)

  • 김정환;서승연;송철규;김경섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.397-398
    • /
    • 2019
  • 망막혈관 영상에서(retinal image) 혈관의 모양 또는 생성변화를 효과적으로 검진하기 위해서 망막혈관을 자동적으로 분리하는 영상분할 기법의 개발은 매우 중요한 사안이다. 이를 위해서 주로 망막혈관영상의 잡음을 억제하고 또한 혈관의 명암대비도(contrast)를 증가시키는 전처리 과정을 거쳐서 혈관의 국부적인 화소값의 변화, 방향성을 판별하여 혈관을 자동적으로 검출하는 방법들이 제시되어왔으며 최근에는 합성곱 신경망(CNN) 딥러닝 학습모델을 활용한 망막혈관 분리 알고리즘들이 제시되고 있다.

  • PDF

형광 안저화상에 관한 특수 영역의 유출 및 모양 (Extraction and Shape Description of Feature Region on Ocular Fundus Fluorescein Angiogram)

  • 고창림;하영호;김수중
    • 대한의용생체공학회:의공학회지
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 1987
  • An image feature extraction method for the low contrast fluoresceln angiogram in dlabetes was studied. To obtain effective image segmentation, an adaptive local difference image is generated and relaxation process are applied to this difference Image. By the use of distance transformed data with segmented image, shape and location of feature regions were obtained. It was shown that the location and shape descriptions of Impaired blood vessel networks and retinal regions are can he utilized for the diagnosis of diabetes and other disease.

  • PDF