• Title/Summary/Keyword: Reticulum

Search Result 898, Processing Time 0.033 seconds

Ultrastructural Changes of Endoplasmic Reticulum on Hepatocytes by Cyclohexane Injection in Alcohol-pretreated Rats (알코올 전처치한 흰쥐에 Cyclohexane 투여로 인한 간 세포 내 소포체 미세구조의 변화)

  • Kim, Byung-Ryul;Yoon, Chong-Guk;Cho, Hyun-Gug
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • To evaluate the effects of ingestion of alcoholic drinks on the toxicities of industrial compounds, cyclohexane (CH) was intraperitoneally administrated to rats (1.56g/kg body weight), which had been ingested 15% ethanol for up to 6 weeks,4 times by once a day and every other day. Following the last treatment of ethanol or CH, blood and liver tissues were collected after 4 hours prior to sacrifice of animals. By the injection of CH, liver weight (% of body weight) and xanthine oxidase activity in serum were increased, and glucose-6-phasphatase (G6P) activity in liver was decreased compared to them of control group. The activities of CH metabolizing enzymes, such as cytochrome P450 dependent aniline hydroxylase (CYPdAH) and alcohol dehydrogenase (ADH), were significantly increased by injection of CH, and those activities were the highest in CH-injected group after pretreated with alcohol. Ultrastructurally. both of alcohol treatment and CH injection induced transforming into the smooth-endoplasmic reticulum from rough-endoplasmic reticulum, the those rate was the highest in case of CH-injection after pretreated with alcohol. From these results, it is suggested that alcohol intake on a level without alcoholic degeneration of hepatocytes could enhance the CH metabolism of liver.

Histological Study on the Activated Carbon in the Rat Liver with Toxicated by Lead (활성탄이 납 중독된 흰쥐의 간장에 미치는 조직학적 연구)

  • Chung, Min-Ju;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2002
  • For investigation of the activated carbon in the rat liver toxicated by lead. Aniamls used $7{\sim}8$ weeks to Sparague-Dewley rat (150 g). The lead acetate (500 ppm) were injected and activated carbon (40 mg/kg) were treated orally for four and eight weeks, respectivelly, and observed by the electron microscope. The group with only lead for 4 weeks, The mitochondria and rough endoplasmic reticulum (rER) were extended and ribosomes dropped from the rER. The group with lead-activated carbon for 4 weeks, The number of lysosomes increased. The shapes of nucleus and rough endoplasmic reticulum observed almost similar with nomally. The group with only lead for 8 weeks, The mitochondria and rough endoplasmic reticulum (rER) were more extended. The group with lead-activated carbon for 8 weeks, the nucleus and rough endoplasmic reticulum was observed nomally.

Studies on the Effects of cAMP on the ATPase Activity and on the Calcium Uptake of the Sarcoplasmic Reticulum (근 소포체의 ATPase 활성과 Ca 능동수송에 미치는 cAMP의 영향)

  • 河斗鳳;朴姬淳;尹炳宇;金漢都
    • The Korean Journal of Zoology
    • /
    • v.18 no.4
    • /
    • pp.221-229
    • /
    • 1975
  • The effect of adenosine 3', 5'-cyclic monophosphate on the ATPase activity and on the active transport of Ca of the sarcoplasmic reticulum fragments of the rabbit skeletal muscle was studied. Cyclic AMP (cAMP) had no effect on the ATPase activity of the fragments (8,000 ~ 20,000 $\times$ G and 20,000 ~ 36,000 $\times$ G fractions). $N^6$, O^{2'} -Dibutyryl cAMP (DBcAMP) had either no effect on the activity. On the other hand, theophylline (1 mM) increased the activity by about 20%. The active uptake of Ca by the sarcoplasmic reticulum fragments was inhibited by the presence of 1$\times$$10^{-6}$ ~ 1 $\times$ $10^{-3}$M of cAMP. The presence of DBcAMP or theophylline also inhibited the uptake. It is, therefore, concluded that the Ca uptake of the sarcoplasmic reticulum seems to be controlled by cAMP.

  • PDF

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

Effect of exercise and diet intervention on endoplasmic reticulum (ER) stress in rat skeletal muscle and adipose tissue (운동부하가 고지방식이 유도 비만흰쥐의 골격근 및 지방조직의 ER (Endoplasmic Reticulum)스트레스에 미치는 영향)

  • Kim, Gi Chool;Park, Kyung Sil;Kim, Hyun Kook;Kim, Ki Hoon
    • Journal of Nutrition and Health
    • /
    • v.45 no.5
    • /
    • pp.420-428
    • /
    • 2012
  • The purpose of this study is to investigate the effects of eight weeks high fat intake and regular exercise in skeletal muscle and adipose tissue for Endoplasmic Reticulum (ER) stress in rats. This experiment involved 32 subjects (sprague-dawley rats) divided into four groups as follows: chow group (Chow, n = 8), chow and exercise group (Chow + EX, n = 8), high fat diet-induced hyperlipidemia group (HF, n = 8), and HF and exercise group (HF + EX, n = 8). As a result, there were significant decrease in body weight and abdominal fat, and blood lipid level was significantly improved by exercise for eight weeks (p < .05). There were variables changed about the skeletal muscle and ER stress in GRP78, XBP-1, ATF4, CHOP and JNK mRNA. There increased in mRNA factor by exercise, especially GRP78, and ATF4 mRNA were significantly increased in exercise (p < .05). However, there were increased in adipose tissue by exercise and there were significantly decreased in mRNA factor by high fat diet (p < .05). Consequently, this study suggests that the consistent exercise was more improved of obesity factor, such as dyslipidemia, hyperlipidemia, hyperglycemia, as well as body weight or abdominal fat. The response of ER stress in adipose tissue and skeletal muscle were more sensitive in exercise than high fat diet feed.

Emodin exerts protective effect against palmitic acid-induced endoplasmic reticulum stress in HepG2 cells

  • Thomas, Shalom Sara;Park, Sora;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Purpose: Protein overloading in the endoplasmic reticulum (ER) leads to endoplasmic reticulum stress, which exacerbates various disease conditions. Emodin, an anthraquinone compound, is known to have several health benefits. The effect of emodin against palmitic acid (PA) - induced ER stress in HepG2 cells was investigated. Methods: HepG2 cells were treated with varying concentrations of palmitic acid to determine the working concentration that induced ER stress. ER stress associated genes such as ATF4, XBP1s, CHOP and GRP78 were checked using RT- PCR. In addition, the expression levels of unfolded protein response (UPR) associated proteins such as $IRE1{\alpha}$, $eIF2{\alpha}$ and CHOP were checked using immunoblotting to confirm the induction of ER stress. The effect of emodin on ER stress was analyzed by treating HepG2 cells with $750{\mu}M$ palmitic acid and varying concentrations of emodin, then analyzing the expression of UPR associated genes. Results: It was evident from the mRNA and protein expression results that palmitic acid significantly increased the expression of UPR associated genes and thereby induced ER stress. Subsequent treatment with emodin reduced the mRNA expression of ATF4, GRP78, and XBP1s. Furthermore, the protein levels of $p-IRE1{\alpha}$, $p-eIF2{\alpha}$ and CHOP were also reduced by the treatment of emodin. Analysis of sirtuin mRNA expression showed that emodin increased the levels of SIRT4 and SIRT7, indicating a possible role in decreasing the expression of UPR-related genes. Conclusion: Altogether, the results suggest that emodin could exert a protective effect against fatty acid-induced ER stress and could be an agent for the management of various ER stress related diseases.

Inhibitory Effects of Litsea japonica Flesh Water Extract against Endoplasmic Reticulum Stress in HepG2 Cells (HepG2 세포에서 까마귀쪽나무 과육 열수 추출물의 소포체 스트레스 억제 효능)

  • Kim, Eun Ok;Jegal, Kyung Hwan;Kim, Jae Kwang;Lee, Ju Sang;Park, Chung A;Kim, Sang Chan;Cho, Il Je
    • Herbal Formula Science
    • /
    • v.26 no.4
    • /
    • pp.307-318
    • /
    • 2018
  • Objectives : Endoplasmic reticulum (ER) stress designates cellular responses to the accumulation of misfolded and unfolded proteins in ER, which is related to a variety of liver diseases. Present study investigated the inhibitory effects of Litsea japonica flesh water extract (LJE) aganist ER stress. Methods : After HepG2 cells were pretreated with LJE and subsequently exposed to tunicamycin (Tm) or thapsigargin (Tg), expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 kDa (GRP78), asparagine synthetase (ASNS), and endoplasmic reticulum DnaJ homologue 4 (ERDJ4) were determined by immunoblot and real-time PCR analysis. Three canonical signaling pathways in response to ER stress were examined to explore molecular mechanisms involved. Results : Pretreatment of 1 mg/mL LJE inhibited Tm- or Tg-induced CHOP expression, while L. japonica fruit water extract did not. In addition, LJE decreased the levels of GRP78, ASNS, and ERDJ4 mRNA by Tm. Moreover, phosphorylations of eukaryotic translation initiation factor $2{\alpha}$ and inositol-requiring enzyme 1, expression of nuclear form of activating transcription factor $6{\alpha}$, and transactivation of ER stress response element- and unfolded protein response element-harboring luciferase activities were inhibited by LJE pretreatment. Conclusions : Present results suggest that LJE would be a candidate to prevent or treat ER stress-mediated liver injuries.

Development of Porcine Somatic Cell Nuclear Transfer Embryos Following Treatment Time of Endoplasmic Reticulum Stress Inhibitor

  • Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • We examine the effect of endoplasmic reticulum (ER) stress inhibitor treatment time on the in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT embryos were classified by four groups following treatment time of ER stress inhibitor, tauroursodeoxycholic acid (TUDCA; 100 µM); 1) non-treatment group (control), 2) treatment during micromanipulation process and for 3 h after fusion (NT+3 h group), 3) treatment only during in vitro culture after fusion (IVC group), and 4) treatment during micromanipulation process and in vitro culture (NT+IVC group). SCNT embryos were cultured for six days to examine the X-box binding protein 1 (Xbp1) splicing levels, the expression levels of ER stress-associated genes, oxidative stress-related genes, and apoptosis-related genes in blastocysts, and in vitro development. There was no significant difference in Xbp1 splicing level among all groups. Reduced expression of some ER stress-associated genes was observed in the treatment groups. The oxidative stress and apoptosis-related genes were significantly lower in all treatment groups than control (p<0.05). Although blastocyst development rates were not different among all groups (17.5% to 21.7%), the average cell number in blastocysts increased significantly in NT+3 h (48.5±2.3) and NT+IVC (47.7±2.4) groups compared to those of control and IVC groups (p<0.05). The result of this study suggests that the treatment of ER stress inhibitor on SCNT embryos from the micromanipulation process can improve the reprogramming efficiency of SCNT embryos by inhibiting the ER and oxidative stresses that may occur early in the SCNT process.

Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway

  • Qiuyang Li;Hang Sun;Shiwei Liu;Jinxin Tang;Shengnan Liu;Pei Yin;Qianwen Mi;Jingsheng Liu;Lei yu;Yunfeng Bi
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.645-653
    • /
    • 2023
  • Background: Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results: Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion: These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.

Observation of Histochemical Ultrastructure in Regenerating Rat Liver (재생중인 흰쥐 간세포의 조직화학적 미세구조 관찰)

  • Choi, Chee-Yong;Sohn, Seong-Hyang;Yoo, Chang-Kyu;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.18 no.2
    • /
    • pp.205-217
    • /
    • 1988
  • An ultrastructural study of hepatocyte proliferation in the regenerating rat liver has been made by means of the partial hepatectomy. And electron microscopic histochemistry of hepatocyte in the regenerating rat liver is studied through alkaline phosphatase reaction. The results are as follows: 1. When the regeneration of rat liver is induced by the partial hepatectomy, the prominent ultrastructural characteristics of hepatocyte are changes of the distribution of chromatin in nucleus, increase of the number of mitochondria and decrease of the size of them, development of rough endoplasmic reticulum, and transient decrease of glycogen granules in cytoplasm. 2. Alkaline phosphatase reaction products are appeared in the nucleus or rough endoplasmic reticulum of hepatocyte during the initial regeneration of liver as 24, 48 and 72 hour groups after partial hepatectomy. And these positive reaction are mainly increased in cytoplasm and plasma membrane of hepatocytes during 1, 2 and 3 week groups after partial hepatectomy. As 4 weeks passed after partial hepatectomy, these positive reaction is located in the sinusoidal epithelial cells or erythrocytes. With above results, we concluded that alkaline phosphatase was synthesized in the rough endoplasmic reticulum bounded ribosomes of regenerating hepatocyte, was transported to the plasma membrane of them, and then was transported in blood by the way sinusoidel epithelial cells.

  • PDF