• Title/Summary/Keyword: Retention time of liquid phase

Search Result 73, Processing Time 0.031 seconds

Method development and validation of spectrophotometric and RP-HPLC methods for simultaneous estimation of spironolactone and furosemide in bulk and combined tablet dosage forms

  • Chavan, Rohankumar R.;Bhinge, Somnath D.;Bhutkar, Mangesh A.;Randive, Dheeraj S.;Salunkhe, Vijay R.
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.212-224
    • /
    • 2021
  • The intent of the present work was to develop a simple, sensitive, accurate, precise, rapid and economical UV- spectrophotometric and reverse phase high pressure liquid chromatographic method for the simultaneous estimation of Spironolactone and Furosemide in bulk and combined tablet dosage forms. UV-Spectrophotometry was carried out by simultaneous equation method using 0.02 M potassium dihydrogen phosphate buffer pH 3.5: Acetonitrile (50:50) v/v as a solvent. The linearity range was 2-14 ㎍ mL-1 for Spironolactone and Furosemide with a correlation coefficient > 0.99. The chromatographic separation was achieved on 250 mm × 4.6 mm, hypersil BDS C18 column with particle size 5 ㎛, by using an isocratic mixture of 0.02 M potassium dihydrogen phosphate buffer pH 3.5: Acetonitrile: tert butyl methyl ether (49:50:1) v/v/v as a solvent at a flow rate of 1 mL min-1 and UV detection was carried out at 254 nm. The retention time were observed to be 3.666 and 6.661 minutes for Furosemide and Spironolactone respectively. The two developed methods were validated according to the ICH guidelines for accuracy, precision, linearity, LOD, LOQ and were found to be within the limits. It can be concluded that these two methods could be successfully used for the simultaneous estimation of Spironolactone and Furosemide in bulk and combined tablet dosage forms.

Simultaneous Determination and Optimization Ultrasound-Assisted Extraction of Poncirin and Naringin in Poncirus trifoliata Rafinesqul (지실의 Poncirin, Naringin의 동시분석법 확립과 초음파 추출법 최적화)

  • Lee, Ah Reum;Jang, Seol;Lee, A Yeong;Choi, Goya;Kim, Hyo Seon;Kim, Ho Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The Ponciri fructus immaturus (Poncirus trifoliata Rafinesque) has been used in oriental medicine for uterine contraction, stomachache, abdominal distension and cardiovascular diseases. Two main compounds, poncirin and naringin were successfully analyzed by high performance liquid chromatography (HPLC) and carried out method validation according to ICH guideline. A successful resolution and retention times were obtained with a $C_{18}$ reversed phase column, at an $1m{\ell}min^{-1}$ flow rate, with a gradient elution of a mixture of methanol, water and acetonitrile. Poncirin and naringin showed good linearity ($R^2$ > 0.999) in relatively wide concentration ranged. The recovery of each compound was 95.81 ~ 101.48% with R.S.D. values less than 1.0%. The application of ultrasound-assisted extraction was shown to be more efficient in extracting poncirin and naringin from Ponciri fructus immaturus. The predicted optimal poncirin and naringin yield were poncirin 2.15%, naringin 1.65% under an extraction temperature of $40^{\circ}C$, an extraction time of 10 min in a solvent of 70% methanol.

The Effect of pH and Temperature on Lysozyme Separation in Ion-exchange Chromatography (이온교환크로마토그래피에서 라이소자임 분리에 미치는 pH와 온도 영향)

  • Ko, Kwan-Young;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.98-105
    • /
    • 2014
  • Lysozyme amounts to 0.3% in egg white and functions as an agent of cell lysis and activator of tissue reconstruction. Ion exchange chromatography is the most useful method of separation among affinity chromatography, ion exchange chromatography, and ultra-filtration. The aim of present study is to find the optimum pH and temperature for the separation of lysozyme in egg white within cation exchange gel filled glass column. And we compared results of experiments with those of simulations. Phosphate buffer was used, and pH and temperature were varied as 5~7 and $25{\sim}40^{\circ}C$ respectively. RP-HPLC was the tool for the retention time identification and quantitative analysis of lysozyme. OriginPro 8 measured the peak area of lysozyme chromatogram and quantified the eluted lysozyme. Largest amount of lysozyme was separated under the conditions of pH 5 and T $25^{\circ}C$.

Chromatographic Separation of Hydrogen Isotopes by Deactivated Alumina Stationary Phase (비활성 알루미나 고정상을 이용한 수소동위원소의 크로마토그래피 분리)

  • Kim, Kwang Rag;Lee, Sung Ho;Kang, Hee Suk;Chung, Hongsuk;Sung, Ki Woung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 1998
  • In fields of operating or handling a hydrogen isotope facility, and of the technology for nuclear fusion source management, gas chromatography has been used as one of the practical techniques lot separation and enrichment of hydrogen isotopic gases including tritium. Chromatographic separation experiments of the hydrogen isotope mixture (hydrogen, deuterium and tritium) were carried out by use of a commercially available gas chromatograph. An aliquot of gas sample was injected by a specially designed vacuum sampler into the stream of inert carrier gas which went through the separation column under liquid nitrogen temperature. The complete separation of hydrogen isotopic molecules was observed with an alumina adsorbent partially deactivated by coating with 10% manganese chlorine. In addition, fairly good separation conditions were obtained without any appearance of nuclear spin isomers with shorter retention time, which would be available for the practical applications of the hydrogen isotope separation and enrichment.

  • PDF

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

Analytical Method of Multi-Preservatives in Cosmetics using High Performance Liquid Chromatography (HPLC 를 이용한 화장품 중 살균보존제 다성분 동시분석법 연구)

  • Min-Jeong, Lee;Seong-Soo, Kim;Yun-Jeong, Lee;Byeong-Chul, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.321-330
    • /
    • 2022
  • This study attempted to establish an optimal multi-compound simultaneous analysis method that can secure reliable results for 15 - preservatives, 2 - sun screens and 1 - antioxidants of cosmetics using HPLC-PDA. Since the potential of hydrogen (pH) in the mobile phase affects the acid dissociation constant (pKa) of the preservatives, and the peak retention time shift and area change were observed. The peak separation condition was established by adjusting the pH to 0.1% H3PO4 addition (mL) when preparing the mobile phase. As a results of method validation, the linearity correlation coefficient (R2) of above 0.999 were obtained, and accuracy 87.9 ~ 101.1%, 0.1 ~ 7.6% precision for two types of cosmetics (cream and shampoo). It was found that the limit of detection (LOD) was 0.1 ~ 0.2 mg/kg and the limit of quantitation (LOQ) was 2.0 ~ 4.0 mg/kg. In addition, it was possible to simultaneously separate p-anisic acid, a natural compound that was difficult to separate in HPLC due to the small difference from methylparaben, a synthetic preservatives. Through this study, it will be effectively used to secure quality control and safety for compound that need restrictions on use cosmetics.

Development of Method for Analysis of Four Sulfonylurea Pesticides, Rimsulfuron, Ethametsulfuron-methyl, Tribenuron-methyl, Chlorimuron-ethyl Residues by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC/DAD를 이용한 림술푸론, 에타메트설푸론메틸, 트리베누론메칠, 클로리무론에칠 4종 성분의 잔류농약 분석법 개발)

  • Koo, Yun-Chang;Yang, Sung-Yong;Wang, Zeng;An, Eun-Mi;Heo, Kyoung;Kim, Hyeng-Kook;Shin, Han-Seung;Lee, Jin-Won;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1231-1235
    • /
    • 2010
  • The method for residue analysis of four sulfonylurea pesticides, rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl and chlorimuron-ethyl was examined and analyzed by HPLC with ODS column ($250\;mm{\times}4.6\;mm$, $5\;{\mu}m$ diameter particle size) which was maintained at $35^{\circ}C$. Mobile phase consisted of solvent A (20 mM $KH_2PO_4$, pH 2.5) and solvent B (acetonitrile). Isocratic elution of the column with 45% solvent A and 55% solvent B at a flow rate of 1 mL/min resulted in retention times of 5.92, 6.54, 9.28, and 14.35 min for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. All injection volumes were $20\;{\mu}L$. The limit of quantitation was 0.02, 0.01, 0.001, and 0.004 mg/kg for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. Recovery rate test was performed with three farm products, rice, apple and soybean. Four sulfonylurea pesticides were spiked at concentrations of 0.05, 0.1 and 0.5 mg/kg. The recovery rates were ranged from 86.12% to 116.26% and the standard deviations of all experiments were within 10%.

A Study on Qualitative and Quantitative Analysis of Major ingredients in Scutellariae radix (황금(Scutellariae radix)의 주요 성분의 정성 및 정량분석에 관한 연구)

  • Rhee, Jae-Seong;Woo, Eun Ran;Kim, Nam-Hyuk;Lee, Eun-Ju;An, Duk-Kyun;Lee, Je-Hyun;Park, Seong Kyu;Park, Ho-Koon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.91-104
    • /
    • 1997
  • Scutellariae radix has been used on the control of body fever as oriental medicine for thousand years. Analytical aspect for the main components of Scutellariae radix was set up improving sensitivity and resolution. The analysis of 3 different flavonoids present in Scutellariae radix-baicalin, baicalein, wogonin-was conducted by means of high performance liquid chromatography with ODS reverse phase column in conjunction with a Photo Diode Array UV detector(280nm) at $40^{\circ}C$. Mobile phase was carried out at 1mL/min, composed of acetonitrile and 0.1M phosphoric acid in the form of a gradient method. Under these circumstances the retention time for baicalin, baicalein, wogonin was 7.65, 11.65 and 14.12 minutes respectively. As a result for the efficiency on extraction of active ingredients with proposed analytical process according to it's growing districts, Sunchang in Junbuk for baicalin and Bulkyo in, Junnam for bicalein and wogonin have shown the best results. Even the extraction at room temperature was satisfactory. Among acids, 0.1M acetic acid revealed the best achievements. The mixture of acetonitrile and 0.2M phosphoric acid(75:25) has been shown the best efficiency as well as stability for the extraction of active ingredients.

  • PDF

Evaluation of Decomposition Characteristics of Organochlorine Pesticides Using Thermal Method (열적방법을 활용한 유기염소계 폐농약의 분해 특성 평가)

  • Kwon, Eun-Hye;Yoon, Young-Sam;Bea, Ji-Su;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.744-753
    • /
    • 2018
  • The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was $850^{\circ}C$ and $1100^{\circ}C$. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than $1,100^{\circ}C$.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.