• Title/Summary/Keyword: Retention of stem

Search Result 34, Processing Time 0.026 seconds

Comparison of Nitrogen Removal in a Horizontal Subsurface-Flow Wetland Purifying Stream Water with and without Litter Layer on its Surface (하천수를 정화하는 수평흐름 여과습지의 표면 잔재물층 유무에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.1
    • /
    • pp.111-122
    • /
    • 2009
  • Abatements of TN and ${NO_3}^-$-N in a horizontal subsurface-flow wetland with litter layer on its surface were compared with those without one. The wetland was constructed in 2001 on floodplain of the Gwangju Stream which flows through Gwangju City in Korea. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm was filled with crushed granites (15~40mm in diameter) and a middle layer of 10cm had pea pebbles. An upper layer of 5cm contained coarse sands. Reeds (Phragmites australis) growing in natural wetlands were transplanted on its surface. Water of the stream was channelled into the wetland by gravity flow and its effluent was discharged back into the stream. Average Litter layer of 12.2cm was formed on its surface in 2007. The layer and above-ground parts of reeds were eliminated in April 2008. Volumes and water quality of influent and effluent of the wetland were analyzed from May to November in 2007 and 2008, respectively. Inflow into the wetland both in 2007 and 2008 averaged approximately 40$m^3$/day and hydraulic residence time both in 2007 and 2008 was about 1.5days. Influent TN concentration in 2007 and 2008 averaged 3.96 and 3.89mg/L, respectively and average influent ${NO_3}^-$-N concentration in 2007 and 2008 was 2.11 and 2.05mg/L, respectively. With a 0.05 significance level, influent concentrations of TN and ${NO_3}^-$-N, temperatures and pH of effluent, and heights and stem numbers of reeds showed no difference between the wetland with litter layer and without one. TN retention in the wetland with litter layer and without one averaged 64,76 and 54.69%, respectively and ${NO_3}^-$-N removal averaged 60.83 and 50.61%, respectively. Both TN and ${NO_3}^-$-N abatement rates in the wetland with litter layer were significantly high (TN abatement: p<0,001, ${NO_3}^-$-N abatement: p=0.001) when compared with those without one. The subsurface-flow wetland having litter layer on its surface was more efficient for TN and ${NO_3}^-$-N removal.

Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings (비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향)

  • Choi, Jong-Myung;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.

Bioactive Materials and Biological Activity in the Extracts of Leaf, Stem Mixture and Root from Angelica gigas Nakai (참당귀 잎, 줄기혼합물과 뿌리 추출물의 생리활성물질 및 그 활성작용)

  • Heo, Jin-Sun;Cha, Jae-Young;Kim, Hyun-Woo;Ahn, Hee-Young;Eom, Kyung-Eun;Heo, Su-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.750-759
    • /
    • 2010
  • The bioactive materials (phenolic compounds, flavonoids, minerals, decursin and decursinol angelate) and biological activities (DPPH [$\alpha,\alpha$'-diphenyl-$\beta$-picrylhydrazyl] free radical scavenging capability, reducing power, and tyrosinase activity) in the extracts of leaf, stem mixture (AGLS), and root (AGR) from Angelica gigas Nakai were examined by using water, hot water and ethanol solvent. The highest extract yield (21.89%) was found in the water extract of AGR. The highest concentrations of phenolic compounds and flavonoids in the ethanol extracts of AGLS and AGR were 14.99% and 14.79%. Major minerals of AGLS and AGR were K, Mg, Fe, Na and Ca. Decursin and decursinol angelate were the major ingredients of Angelica gigas, detected at 18.71 and 18.89 min of retention time by HPLC analysis, respectively. The highest concentrations of decursin and decursinol angelate in the Angelica gigas ethanol extract were found in root ($41.7\;{\mu}g/g$) and leaf ($34.04\;{\mu}g/g$). The highest free radical scavenging activity was found in the hot water extracts of AGLS and AGR, and its activity was stronger in all extracts of AGLS than AGR. The highest reducing power was found in the ethanol extracts of AGLS and AGR and this was dependent on the sample concentration. The hot water extracts of AGLS and AGR revealed the highest inhibition activity on tyrosinase. Overall, these results may provide the basic data needed to understand the biological activities of bioactive materials derived from Angelica gigas.

Effects of the Double Cropping System on Wheat Quality and Soil Properties (밀-하작물 작부체계가 밀 품질 및 토양에 미치는 영향)

  • Jisu Choi;Seong Hwan Oh;Seo Young Oh;Tae Hee Kim;Sung Hoon Kim;Hyeonjin Park;Jin-Kyung Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • To achieve self-sufficiency in domestic wheat (Triticum aestivum L.), an increase in high-quality wheat production is essential. Given Korea's limited land area, the utilization of cropping systems is imperative. Wheat is compatible with a double cropping system along with rice, soybeans, and corn. Data on alterations in wheat quality following summer crop cultivation is required. This study investigated the impact of cultivating preceding crops such as rice, soybeans, and corn in a wheat cropping system. The analysis focused on the influence of these preceding crops on wheat growth, quality, and soil characteristics, elucidating their interrelationships and impacts. While there were no differences in growth timing and quantity during wheat growth, a significant variance was observed in stem length. Protein content, a key quality attribute of wheat, displayed variations based on the intercropped crops, with the highest increase observed in wheat cultivated after soybeans. Soil moisture content also exhibited variations depending on the intercropping system. The wheat-rice intercropping system, which requires soil moisture retention, resulted in greater pore space saturation in comparison to other systems. Moreover, soil chemical properties, specifically phosphorus and calcium levels, were influenced by intercropping. The highest reduction in soil phosphorus content occurred with soybean cultivation. These findings suggest that intercropping wheat with soybeans can potentially enhance wheat quality in domestic varieties.