• Title/Summary/Keyword: Retention Time of Liquid Phase

Search Result 73, Processing Time 0.025 seconds

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

A Study on Quantitative Method of Piperine in Pure Ground Black Pepper (후추중의 Piperine 정량법에 관한 연구)

  • 고종명
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.3
    • /
    • pp.169-174
    • /
    • 1995
  • Piperine, component of pure ground black pepper, has strong stimulative and hot. Analytical method for piperine was developed by high performance liquid chromatography. Analytical conditions are as follows, mobile phase is 70% methanol, detector UV 343 nm (0.05 AuFs), column is Novapak 5 C18 (15 cm $\times$ 4.6mm), flow rate is 1.0ml/min, chart speed is 0.25 cm/min and injection volume is 20 ul. Analytical results are as follows that relative standard deviation is 1.15%, calibration curve is y=170473.1x-7848.5 (R2=0.999) that shows good linearity. Standard solution of piperine is stable up to 10 hr and content of piperine in pureground black pepper is 4.97$\pm$0.86% Retention time of piperine in HPLC method is about 7 min. Therefore, the developed HPLC method including simple pretreatment of sample will be contribute to quality mangement.

  • PDF

A Study on Detection Method of Sulfonamides Residues in Raw Milk by HPLC (HPLC를 이용한 원유중 잔류 Sulfonamides 분석법 연구)

  • 정동수;윤교복;김종술;신명균;김교승
    • Korean Journal of Veterinary Service
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 1993
  • This experiment was carried out to detect the residues of sulfonamides in raw milk. Raw milks which does not contain sulfonamides was collected from one of the farm and fortified with 5 sulfonamides (sulfamerazine, sulfamethazine, sulfamonomethoxine, sulfadimethoxine, sulfaqinoxaline). The sulfonamides in the fortified sample were extracted and detected by High Performance Liquid Chromatography. UV /vis detector was used in this experiment. The results obtained were summarized as follows : 1. Chloroform was good as a extracting solution. 2. 15.5% methanol in PDP as a mobile phase solution was best detective condition for SMR, SMT, SMM. But for SDM and SQN the best condition was 23% methanol. 3. The detectable limits of SMR, SMT, SMM were 2ppb. but SDM and SQN were 20ppb because of delayed retention time and relatively low recovery rate. 4. The peaks of SMR, SMT, SMM and SDM were erected at baseline and the apexes were sharp but SQN was round shape.

  • PDF

Separation of Follicular Fluid Components Stimulating Sperm Migration with Chromatographic Paper, $=mu$RPC and Superose Columns (Chromatography용 Paper, $\mu$RPC Column 및 Superose Column을 이용한 정자의 이동을 자극하는 난포액 성분의 분리)

  • 박영식
    • Journal of Embryo Transfer
    • /
    • v.13 no.3
    • /
    • pp.301-312
    • /
    • 1998
  • To efficiently separate a protein stimulating sperm swim-up migration and movement from follicular proteins, the effect of paper chromatography and liquid chromatography with reverse phase column and superose column on protein separation was examined. And the results obtained were as follows; 1. The band component that was separated with paper chromatography stimulated sperm migration and movement depending on its additional levels. Especially, band I component significantly increased sperm migration. But, all components of bands 1, 2 and 3 showed lower sperm migration and movement, compared to follicular fluid at the same additional level. 2. Among the components separated from follicular protein of 2~5mm follicles with reverse phase column ($\mu$RPC), components at retention time (RT) of 3.33, 7.00, 13.87, and 16.6A minutes stimulated sperm migration within a limited range. 3. All components separated from follicular protein of 10mm follicles with $\mu$RPC column didn't stimulate sperm migration and movement. 4. Among the components separated from follicular protein of 2~5m follicles with superose column, components at retention volume (RV) of 1.35 and 0.82 ml significantly stimulated sperm migration and movement. In conclusion, protein components stimulating sperm migration and movement were efficiently separated with superose column in Smart system. Especially, components of RV 1.35 and RV0.82 stimulated sperm swim-up separation.

  • PDF

Isolation of a starfish myorelaxant peptide (SMP) isotype from the pyloric caeca of Patiria pectinifera

  • Kubarova, Anastasia;Go, Hye-Jin;Park, Nam Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2021
  • Peptides are naturally occurring biological molecules that are found in all living organisms. These biologically active peptides play a key role in various biological processes. The aim of this study is the extraction and the purification of bioactive materials that induce relaxation of an apical muscle from the pyloric caeca of Patiria pectinifera. The acidified pyloric caeca extract was partially separated by the solid phase extraction using a stepwise gradient on Sep-Pak C18 cartridge. Among the fractions, materials eluted with 60% methanol/0.1% trifluoroacetic acid was put a thorough of a series of high performance liquid chromatography (HPLC) steps to isolate a neuropeptide with relaxation activity. The purified compound was eluted at 28% acetonitrile in 0.1% trifluoroacetic acid with retention time of 25.8 min on the CAPCELL-PAK C18 reversed-phase column. To determine the molecular weight and the amino acid sequence of the purified peptide, LC-MS and Edman degradation method were used, respectively. The primary structure of the peptide was determined to be FGMGGAYDPLSAGFTD which corresponded to the amino acid sequence of a starfish myorelaxant peptide (SMP) isotype (SMPb) found in the cDNA sequence encoding SMPa and its isotypes. In this study, a muscle relaxant neuropeptide (SMPb) has been isolated from pyloric caeca of starfish P. pectinifera. This is the first report of SMPb isolation on the protein level from P. pectinifera.

High Performance Liquid Chromatographic Assay of a New Fluoroquinolone, LB20304, in the Plasma of Rats and Dogs

  • Seo, Mi-Kyeong;Jeong, Yi-Na;Kim, Hoon-Joo;Kim, In-Chull;Lee, Yong-Hee
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.554-558
    • /
    • 1996
  • High-performance liquid chromatographic method was developed for the determination or LB 20304 (compound 1) in the plasma of rats and dogs. The analyte was deproteinized with 1 volume of methanol and 1/2 volume of 10% zinc sulfate, and the supernatant was injected onto a reversed-phase HPLC column. The mobile phase was a mixture of 24 parts of acetonitrile and 76 parts of 0.1% trifluoroacetic acid. The flow rate was 1 ml/min, and the effluent was monitored by fluorescence detector at an excitation wavelength of 337 nm and an emission wavelength of 460 nm. The retention time of compound 1 was 6.3 min. The assay of compound 1 was linear over the concentration range of 0.2-100.mu.g/ml in the plasma of rats and dogs. The lower limit of quantification was 0.2.mu.g/ml using 100.mu.l of plasma with a 97-99% accuracy and a 12-14% precision. In the 0.5, 5, and 50.mu.g/ml quality control samples, the intra- and inter-day accuracy were 88-95% and 88-97%, whereas intra- and interday precision were 0.5-6.6% and 0.2-9.3%, respectively, in the plasma of rats and dogs. The recoveries were 68-71% independent of concentration and species in the plasma. No interferences from endogenous substances were observed. Taken together, the above HPLC assay method by deproteinization and fluorescence detection was suitable for the determination of compound 1 in the preclinical pharmacokinetics.

  • PDF

Analysis of Related Compounds from Commercial Atenolol Raw Materials and Preparations by High-Performance Liquid Chromatography (HPLC를 이용한 시판 아테놀롤 원료 및 제품 중 유연물질의 분석)

  • Dong, Nguyen Thanh;Kang, Ji-Youn;Jung, Young-Hee;Lim, Eun-Hee;Hwang, Gwi-Seo;Kang, Chan-Soon;Kim, Eun-Jung;Kang, Jong-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.453-457
    • /
    • 2004
  • Atenolol and related compounds found in raw materials and commercial products were analyzed by reversed-phase high-performance liquid chromatography. A mixed solution of phosphate buffer (3.4 g/l, pH 3.0), tetrahydrofurane and methanol (800:20:180, v/v/v) including sodium octanesulfonate (1 g/l) and tetrabutylammonium-hydrogensulfate (0.4 g/l) was used as mobile phase at the flow rate of 0.25 ml/min. Detection was carried out at UV 226 nm. Atenolol related compounds, such as bis ether, tertiary amine and blocker acid were identified by comparing the retention time of the standard. The within-day and between-day precisions of the separated compounds were less than 1.2% and 3.4%, respectively. The contents of related compounds of the tested samples were under the limit prescribed in the European Pharmacopoeia. The pattern of the related compounds showed that atenolol raw materials and products could be classified in three different groups, indicating that the materials originated from different source or treated in different way.

Separation of Taxol from Taxanes by NP-HPLC (정상 액체 크로마토그래피를 이용한 taxane으로부터 taxol의 분리)

  • Chang, Kyung Kon;Row, Kyung Ho;Chung, Sung Taik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.286-291
    • /
    • 1997
  • Taxol which is recognized as a powerful anticancer reagent was extracted from yew extract and separated by NP-HPLC (Normal-PhaseHigh Performance Liquid Chromatography). The experiments were performed in the isocratic mode with $5{\mu}l$ to $100{\mu}l$ injection volume and 1ml/min mobile phase flow rate. The major mobile phase was hexane and small amounts of ethanol, methanol, 1-propanol and isopropanol were added to change the retention behavior. Prior to a real sample, the artificial mixture of taxol, cephalomannine and 10-deacetyltaxol was tested. They are hard to be separated because of similar chemical structures. The experimental results showed that the proper composition of mobile phase for separating the three components was found 96% hexane and 4% ethanol(vol.%) or 96% hexane, 2% 1-propanol and 2% methanol(vol.%). Compared to the run time of 80 minutes for the binary system, the mixture was separated within 50 minutes with the less amount of mobile phase for the ternary system. Finally, $1{\mu}g$ of taxol was separated from yew tree extracts under the optimum operating conditions.

  • PDF

Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative

  • Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Khairuddean, Melati;Zakaria, Latiffah;Ibrahim, Darah
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • This study aimed to examine the anti-candidal efficacy of a novel ketone derivative isolated from Diaporthe sp. ED2, an endophytic fungus residing in medicinal herb Orthosiphon stamieus Benth. The ethyl acetate extract of the fungal culture was separated by open column and reverse phase high-performance liquid chromatography (HPLC). The eluent at retention time 5.64 min in the HPLC system was the only compound that exhibited anti-candidal activity on Kirby-Bauer assay. The structure of the compound was also elucidated by nuclear magnetic resonance and spectroscopy techniques. The purified anti-candidal compound was obtained as a colorless solid and characterized as 3-hydroxy-5-methoxyhex-5-ene-2,4-dione. On broth microdilution assay, the compound also exhibited fungicidal activity on a clinical strain of Candida albicans at a minimal inhibitory concentration of $3.1{\mu}g/ml$. The killing kinetic analysis also revealed that the compound was fungicidal against C. albicans in a concentration- and time-dependent manner. The compound was heat-stable up to $70^{\circ}C$, but its anti-candidal activity was affected at pH 2.

Novel stability indicating high-performance liquid chromatography method for the separation and simultaneous quantification of acalabrutinib and its impurities in pharmaceutical formulation

  • Venu Gopal Kamani;Sujatha M;Guna Bhushana Daddala
    • Analytical Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • This study reports for the first time about a stability indicating RP-HPLC method for qualitative and quantitative determination of acalabrutinib in bulk and dosage form and in presence its impurities 1, 2 and 3. The chromatographic separation was carried on Zorbax XDB-C18 (250×4.6 mm; 5 µ id) as stationary phase, Phosphate buffer pH 6.4 and methanol 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL/min, UV detection was carried at wavelength of 238 nm and the analysis was completed with a run time of 15 min. In these conditions the retention time of acalabrutinib and its impurities 1, 2 and 3 was observed to be 3.50, 4.83, 8.40 and 9.93 min respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability and robustness. Spiked recovery at 50 %, 100 % and 150 % was carried for both standard and impurities and the acceptable % recovery of 98-102 was observed for acalabrutinib and both impurities studied and the % RSD in each spiked level was found to be less than 2. Stability tests were done through exposure of the analyte solution to five different stress conditions i.e expose to 1N hydrochloric acid, 1 N sodium hydroxide, 3 % peroxide, 80 ℃ temperature and UV radiation at 254 nm. In all the degradation condition, standard drug acalabrutinib was detected along with both the impurities studied and the degradation products were successfully separated. In the formulation analysis there is no other chromatographic detection of other impurities and formulation excipients. Hence the developed method was found to be suitable for the quantification of acalabrutinib and can separate and analyse impurities 1 and 2.