• Title/Summary/Keyword: Result Analysis and Evaluation

Search Result 5,763, Processing Time 0.039 seconds

Centralized Controller High-altitude Work Car Elevations Lift Structure Safety Assessment (중앙집중식 컨트롤러 고소작업차의 고소리프트의 구조안정성 평가)

  • Kim, Jun-tae;Lee, Gi-yeong;Lee, Sang-sik;Park, Won-yeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • This study was conducted as a post - study on the development of a centralized controller and a hydraulic lift system including structural analysis and remote control for the development of a vertically elevated car. The safety review was carried out through the structural modification of the elevator lift which was developed during the previous research. 3D modeling was performed with Solidworks, and a model of finite element was created through Hypermesh S / W. In addition, the loading environment of the work vehicle for the evaluation is a condition in which the loading amount is 250 kg per position (total, upper, upper, lower, and lower) on the work table, ), The structural analysis was carried out under the condition that the load was 600 kg, and safety was examined in various aspects. As a result, when the allowable load of 250 kg and the excess load of 600 kg are excluded (except Case-11), the stress level is below the yield strength. In the case of Case-11, there is a region exceeding the yield strength at the center support portion of the safety bar at the upper end even after excluding the component which generates the maximum stress, but it does not affect the safety aspect of the whole structure Respectively. Looking at the deflection results, it can be seen that in all cases the maximum deflection occurs in the same table, and the tendency of sagging in both 250 kg and 600 kg is the same.

Evaluation of the Applicability of Sediment Discharge Measurement in Mountain Stream using the Load-cell Sensor (Load-cell Sensor를 이용한 산지 토사유출량 계측의 현장 적용성 검토)

  • Seo, Jun-Pyo;Lee, Ki-Hwan;Kim, Dong-Yeob;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.644-653
    • /
    • 2018
  • Landslides occur frequently due to the effects of heavy rainfall and typhoons caused by climate change. Erosion control measures are needed to effectively prevent landslide damage. In order to improve their efficiency, it is necessary to quantitatively measure the sediment discharge from the mountain stream. In this study, a load cell sensor was installed in a mountain stream and the measured values were compared according to the applicability and load test type in the mountain stream. The result of the load test showed that the effect of the loading type (load test 1, 2) was low at average (loadings) of 0.4kgf and 0.6kgf at sites 1 and 2, respectively. The load factor was also derived by regression analysis to increase the accuracy of the measured values. According to the results of the load factor (normalized) to the load-cell measurement value, the output value increased by 14.8% and 24.6% in sites 1 and 2, respectively, and was calculated to be similar to the reference value. The load cell sensor enabled us to quantitatively estimate the amount of sediment discharge in the mountain stream through time series analysis with the water level and rainfall information. If the monitoring is carried out for a long time, it can be used to find the sediment discharge mechanism for the mountain stream. In addition, applying sensors such as load-cells to a mountain stream is expected to contribute to the development of related industries, such as the manufacturing of measurement sensors.

An Application of FCM(Fuzzy C-Means) for Clustering of Asian Ports Competitiveness Level and Status of Busan Port (FCM법을 이용한 아시아 항만의 경쟁력 수준 분류와 부산항의 위상)

  • 류형근;이홍걸;여기태
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.7-18
    • /
    • 2003
  • Due to the changes of shipping and logistic environment, Asian ports today face severe competition. To be a mega-hub port, Asian ports have achieved a big scale development. For these reasons, it has been widely recognized as an important study to analyze and evaluate characteristics of Asian ports, from the standpoint of Korea where Busan Port is located. Although some previous studies have been reported, most of them have been beyond the scope of Asian ports and analyzed the world's major ports; moreover, the studied ports have been about the ports which are well known from the previous research and reports. So, most studies is unlikely to be used as substantial indicators from the perspective of Busan Port. In addition. most of the existing studies have used hierarchical evaluation algorithm for port ranking, such as AHP (analytical hierarchy process) and clustering analysis. However, these two methods have fundamental weaknesses from the algorithm perspective. The aim of this study is to classify major Asian ports based on competitiveness level. Especially. in order to overcome serious problem of the existing studies, major Asian ports were analyzed by using objective indicators. and Fuzzy C-Means algorithm, which alleviates the weakness of the clustering method. It was found that 10 ports of 16 major Asian ports have their own phases and were classified into 4 port groups. This result implies that some ports have higher potential as ports to lead some zones in Asia. Based on those results. present status and future direction of Busan port were discussed as well.

A Study on Securing a Stable GM for Each Ship Type Considering the Ship's Operating Status (선박의 운항 상태를 고려한 선종별 안정적인 GM 운용에 관한 연구)

  • Kim, Hong-Beom;Kim, Jong-Kwan;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.275-282
    • /
    • 2020
  • Recently, the occurrence of a ship capsizing was analyzed as the main cause of the lack of stability or loss because of the improper management of the center of gravity, the movement of cargo or heavy weight when excessive steering occurs or when navigating during bad weather. Thus, to prevent a ship from capsizing, it is necessary to secure stability to enable the ship's return to its upright position, even if a dangerous heel occurs. The GM is a crucial evaluation factor regarding stability, which the navigation officer uses to preserve stability. In this study, based on the stability data collected from the operating of ships for five years, The GM by ship's type according to the operating status was analyzed specifically such as a ship's length, breadth, and gross tonnage. The feature of the GM distribution according to a ship's length was confirmed, and after performing the correlation analysis between the breadth and the GM, the ratio of the GM to breadth was calculated, and the result was compared with the previous ratio. Additionally, a simple approximation formula and minimum GM for the estimation of the GM by ship type were proposed by the regression analysis of the GM using the gross tonnage (GT)/breadth (B) to reflect the trend of larger ships being built. The results of this study are expected to be used as data for the review of securing a stable GM on ships.

Performance Evaluation and Offset Time Decision for Supporting Differential Multiple Services in Optical Burst Switched Networks (광 버스트 교환 망에서 차등적 다중 서비스 제공을 위한 offset 시간 결정 및 성능 평가)

  • So W.H.;im Y.C.K
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In this paper, we take advantage of the characteristics of optical burst switching (OBS) to support service-differentiation in optical networks. With the offset time between control packet and burst data, the proposed scheme uses different offset time of each service class. As contrasted with the Previous method, in which the high Priority service use only long offset time, it derives the burst loss rate as a QoS parameter in consideration of conservation law and given service-differential ratios and decides a reasonable offset time for this QoS finally Firstly proposed method classifies services into one of high or low class and is an algorithm deciding the offset time for supporting the required QoS of high class. In order to consider the multi-classes environment, we expand the analysis method of first algorithm and propose the second algorithm. It divides services into one of high or low group according to their burst loss rate and decides the offset time for high group, and lastly cumulates the offset time of each class. The proposed algorithms are evaluated through simulation. The result of simulation is compared with that of analysis to verify the proposed scheme.

Evaluation of Effect of Rock Joints on Seismic Response of Tunnels (터널의 지진응답에 대한 암반 절리의 영향 평가)

  • Yoo, Jin-Kwon;Chang, Jaehoon;Park, Du-Hee;Sagong, Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.41-55
    • /
    • 2014
  • In performing seismic analysis of tunnels, it is a common practice to ignore the rock joints and to assume that the rock mass surrounding the tunnel is continuous. The applicability of this assumption has not yet been validated in detail. This study performs a series of pseudo-static discrete element analyses to evaluate the effect of rock joint on the seismic response of tunnels. The parameters considered are joint intersection location, joint spacing, joint stiffness, joint dip, and interface stiffness. The results show that the joint stiffness has the most critical influence on the tunnel response. The tunnel response increases with the spacing, resulting in localized concentration of moment and shear stress. The response of the tunnel is the lowest for joints dipping at $45^{\circ}$. This is because large shear stresses result in rotation of the principal planes by $45^{\circ}$. In summary, the weathered and smooth, vertical or horizontal, and widely spaced joint set will significantly increase the tunnel response under seismic loading. The tunnel linings are shown to be most susceptible to damage due to induced shear stress, and therefore should be checked in the seismic design.

The Effects of Open-ended Problems on Mathematical Creativity and Brain Function (개방형 문제 활용이 수학적 창의력과 뇌기능에 미치는 효과)

  • Kim, Sang-Jeong;Kwon, Young-Min;Bae, Jong-Soo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.723-744
    • /
    • 2010
  • The aim of this study was to find the effects of open-ended problems on mathematical creativity and brain function. In this study, one class of first grade students were allocated randomly into two groups. Each group solved different problems. The experimental group solved the open-ended problems and the comparison group solved the closed-problems. Mathematical creativity was tested by the paper test. And Brain function was tested by an EEG(electroencephalogram) tester. The results of this study are as follows. Firstly, this study analyzed how the open-ended problems are effective on mathematical creativity. This analysis showed that it had a meaningful influence on the mathematical creativity(p=0.46). Accordingly, we could find out that open-ended problems make the student connect the mathematical concept and idea and think variously. Secondly, this study analyzed the effect of open-ended problems on brain function. This analysis showed that it did not have a meaningful influence on the brain function(p=.073) statistically but the experimental group's evaluation was higher than comparison groups' at the post-test. It also had a meaningful influence on the brain attention quotient(left) (p=.007), attention quotient(right) (p=.023) and emotion tendency quotient(p=.025). As a result of such tests, we could find out that open-ended problems are effective on brain function, especially on the attention ability. With the use of the open-ended problems, students could show quick understanding and response. An emotion tendency is also developed in the process. Because various answers are accepted, the students gain an internal reward at the process of finding an answer. Putting the above results together, we could find that open-ended problem is effective on mathematical creativity and brain function.

  • PDF

An Analysis of the Characteristics of Standard Work and Design Information on Estimating Environmental Loads of PSC Beam Bridge in the Design Phase (PSC Beam 교량의 설계단계 환경부하량 산정을 위한 공종 및 설계정보 특성 분석)

  • Yun, Won Gun;Ha, Ji Kwang;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.705-716
    • /
    • 2017
  • As many environmental pollution problems have arisen, various studies related to the environmental evaluation have been carried out in the construction industry. However, there is no methodology for estimating the environmental load quickly for design alternatives of civil facilities in the design phase. This study aim to establish criteria of works information and designed parts which can efficiently estimate environmental loads of PSC beam bridge based on standard quantity at the early design phase. For this purpose, a detailed environmental loads database was constructed by performing Life Cycle Assessment (LCA) based on detailed design data of 25 bridges. In addition, major work with high impact on environmental load were selected, and the analysis of characteristics of environmental load according to the required materials and 8 impact categories were conducted. As a result, the superstructure accounted for 42.91%. In the superstructure, remicon of the material base and PSC beam work occupied 53.13% and 31.25%. In the substructure, remicon, rebar, and cement, which are material base, accounted for more than 93%. It is expected that this major work and material information for each part of bridge can be utilized in the construction of the model, which can estimate the approximate environmental load, reflecting the characteristics of the structure in the design phase.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Evaluation of Insole-equipped Ankle Foot Or thosis for Effect on Gait based on Biomechanical Analysis (인솔 장착형 단하지 보조기의 생체 역학적 분석을 통한 보행 영향성 평가)

  • Jung, Ji-Yong;Kim, Jin-Ho;Kim, Kyung;Trieu, Pham Hai;Won, Yong-Gwan;Kwon, Dae-Kyu;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of insole-equipped ankle-foot-orthoses (AFO) on gait. 10 healthy males who had no history of injury in the lower extremity participated in this study as the subjects. The foot of each subject was first scanned, and the insole fit to the plantar was made using BDI-PCO(Pedcad Gmbh, Germany). The subject then was made to walk on a treadmill under four experimental conditions: 1) normal walking, 2) walking wearing AFO, 3) walking wearing AFO equipped with the insole, 4) walking wearing pneumatic-ankle-foot-orthosis (pAFO) equipped with the insole. During walking, foot pressure data such as maximum force, contacting area, peak pressure, and mean pressure was collected using Pedar-X system (Novel Gmbh, Germany) and EMG activity of lower limb muscles such as gastrocnemius medial head, gastrocnemius lateral head, and soleus was recorded using MP150 EMG module (BIOPAC System Inc., USA). Collected data was then analyzed using paired t-test in order to investigate the effects of the insole. As a result of the analysis, when insole was equipped, overall contacting area was increased while both the highest peak pressure and the mean pressure were significantly decreased, and EMG activity of the lower limb muscles was decreased. On the contrary, the cases of wearing AFO showed the decreased contacting area and the increased pressures. Therefore, the AFO equipped with a proper insole fit well to the foot can help comfortable walking by spreading the pressure over the entire plantar.