• Title/Summary/Keyword: Restorative treatment

Search Result 652, Processing Time 0.018 seconds

INFLUENCES OF DRY METHODS OF RETROCAVITY ON THE APICAL SEAL (치근단 역충전와동의 건조방법이 폐쇄성에 미치는 영향)

  • Lee, Jung-Tae;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.166-179
    • /
    • 1999
  • Apical sealing is essential for the success of surgical endodontic treatment. Root-end cavity is apt to be contaminated with moisture or blood, and is not always easy to be dried completely. The purpose of this study was to evaluate the influence of dry methods of retrocavity on the apical seal in endodontic surgery. Apical seal was investigated through the evaluation of apical leakage and adaptation of filling material over the cavity wall. To investigate the influence of various dry methods on the apical leakage, 125 palatal roots of extracted human maxillary molar teeth were used. The clinical crown of each tooth was removed at 10 mm from the root apex using a slow-speed diamond saw and water spray. Root canals of the all the specimens were prepared with step-back technique and filled with gutta-percha by lateral condensation method. After removing of the coronal 2 mm of filling material, the access cavities were closed with Cavit$^{(R)}$. Two coats of nail polish were applied to the external surface of each root. Apical three millimeters of each root was resected perpendicular to the long axis of the root with a diamond saw. Class I retrograde cavities were prepared with ultrasonic instruments. Retrocavities were washed with physiologic saline solution and dried with various methods or contaminated with human blood. Retrocavities were filled either with IRM, Super EBA or composite resin. All the specimens were immersed in 2% methylene blue solution for 7 days in an incubator at $37^{\circ}C$. The teeth were dissolved in 14 ml of 35% nitric acid solution and the dye present within the root canal system was returned to solution. The leakage of dye was quantitatively measured via spectrophotometric method. The obtained data were analysed statistically using one-way ANOVA and Duncan's Multiple Range Test. To evaluate the influence of various dry methods on the adaptation of filling material over the cavity wall, 12 palatal roots of extracted human maxillary molar teeth were used. After all the roots were prepared and filled, and retrograde cavities were made and filled as above, roots were sectioned longitudinally. Filling-dentin interface of cut surfaces were examined by scanning electron microscope. The results were as follows: 1. Cavities dried with paper point or compressed air showed less leakage than those dried with cotton pellet in Super EBA filled cavity (p<0.05). However, there was no difference between paper point- and compressed air-dried cavities. 2. When cavities were dried with compressed air, dentin-bonded composite resin-filled cavities showed less apical leakage than IRM- or Super EBA-filled ones (p<0.05). 3. Regardless of the filling material, cavities contaminated with human blood showed significantly more apical leakage than those dried with compressed air after saline irrigation (p<0.05). 4. Outer half of the cavity showed larger dentin-filling interface gap than inner half did when cavities were filled with IRM or Super EBA. 5. In all the filling material groups, cavities contaminated with blood or dried with cotton pellets only showed larger defects at the base of the cavity than ones dried with paper points or compressed air.

  • PDF

Studies on the Mechanism of Contraction by Substance P in Rabbit Ileum (Substance P에 의한 가토 회장평활근의 수축기전에 대한 연구)

  • Jo, Se-Hun;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.151-162
    • /
    • 1984
  • The mechanism of the contractile response of longitudial muscle of rabbit ileum to substance P (SP) has been investigated. The contractions in rabbit ileum under various conditions were recorded isometrically The following results were obtained. 1) The contractions by SP increased according to concentrations. SP·induced contraction was not sustained but faded rapidly at $10^{-7}M$. The response to the commutative addition of SP was decreased in comparison to the response to separate administration of each concentration . 2) The response to $10^{-8}M$ SP after 5 min application cf $10^{-7}M$ SP was increased with increasing the time interval between the administration of $10^{-7}$ and $10^{-8}M$ SP. 3) The treatment of rabbit ileum by $10^{-7}M$ SP for 5 min didn't decrease the response to $10^{-6}M$ acetylcholine. 4) $10^{-6}M$ atropine had no effect of the contractile response to $10^{-7}M$ SP. The response to $10^{-7}M$ SP was normal or subnormal in the presence of 3 mM tetraethylammonium(TEA). 5) 100k solution, $10^{-4}M$ ouabain, and Na-free solution inhibited the response to $10^{-8}M$ SP and 3 mM TEA completely, and to $10^{-7}M$ SP incompletely. 3 mM TEA induced a considerable contraction in K-free solution, but $10^{-8}M$ SP didn't induce the contraction. $10^{-6}M$ norepinephrine decreased the contractile responses to SP and TEA. 6) The contractile response to $10^{-7}M$ SP was dependent on the extracellular $Ca^{2+}$ concentrations to 1.8 mM. 7) The contractile response to $10^{-7}M$ SP remained 15% of the maximal response after bathing the ileum in a Ca-free solution for 2.5 min. 8) The responsiveness to SP was completely lost within 10 min of bathing in Ca-free solution, but was restored by the exposure to $Ca^{2+}$. The restorative effect of $Ca^{2+}$ depended on the concentration of $Ca^{2+}$, and on time for which the tissue exposed to this $Ca^{2+}$ concentration. These results suggest that there are two mechanisms of the action by which the low concentrations of substance P causes the contraction of intestinal smooth muscle: the reduction of K conductance and a mechanism dependent on the extracellular $Ca^{2+}$, and that high concentration of SP may elicit a contraction by releasing $Ca^{2+}$ from an intracellular store, which is not as sensitive to removal of extracellular $Ca^{2+}$ or as easily accessible to EGTA as the extracellular space of the muscle. The location of this store is not known; it may be associated with the internal side of the cell membrane.

  • PDF