• Title/Summary/Keyword: Restorative material

Search Result 406, Processing Time 0.03 seconds

Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system

  • Yaylaci, Ayla;Karaarslan, Emine Sirin;Hatırli, Huseyin
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.261-269
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the radiopacities of various types of restorative materials with different thicknesses compared with enamel, dentin, and aluminum. Materials and Methods: Four bulk-fill resins, 2 hybrid ceramics, 2 micro-hybrid resin composites, 6 glass ionomer-based materials, 2 zinc phosphate cements, and an amalgam were used in the study. Twelve disk-shaped specimens were prepared from each of 17 restorative materials with thicknesses of 1 mm, 2 mm, and 4 mm (n=4). All the restorative material specimens with the same thickness, an aluminum (Al) step wedge, and enamel and dentin specimens were positioned on a phosphor storage plate and exposed using a dental X-ray unit. The mean gray values were measured on digital images and converted to equivalent Al thicknesses. Statistical analyses were performed using 2-way analysis of variance and the Bonferroni post hoc test(P<0.05). Results: Radiopacity was significantly affected by both the thickness and the material type (P<0.05). GCP Glass Fill had the lowest radiopacity value for samples of 1 mm thickness, while Vita Enamic had the lowest radiopacity value for 2-mm-thick and 4-mm-thick samples. The materials with the highest radiopacity values after the amalgam were zinc phosphate cements. Conclusion: Significant differences were observed in the radiopacities of restorative materials with different thicknesses. Radiopacity was affected by both the material type and thickness.

Effect of flowable resin composite on bond strength to wedge shaped cavity walls.

  • Ogata, M.;Pereira, PNR.;Harada, N.;Nakajima, M.;Nikaida, T.;Tagami, J.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.558.1-558
    • /
    • 2001
  • Flowable resin composite is a relatively new restorative material. It has been reported that a low viscosity, low modulus intermediate resin applied between the bonding agent and restorative resin act as an "elastic buffer" that can relieve contraction stress. This in-vitro study aimed to evaluate the effect of flowable composite resin as a restorative material on regional tensile bond stredgth to cervical wedge shaped cavity walls. (omitted)

  • PDF

Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models

  • Torres, Fernanda Ferrari Esteves;Guerreiro-Tanomaru, Juliane Maria;Chavez-Andrade, Gisselle Moraima;Pinto, Jader Camilo;Berbert, Fabio Luiz Camargo Villela;Tanomaru-Filho, Mario
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.11.1-11.9
    • /
    • 2020
  • Objectives: This study compared the flow and filling of several retrograde filling materials using new different test models. Materials and Methods: Glass plates were manufactured with a central cavity and 4 grooves in the horizontal and vertical directions. Grooves with the dimensions used in the previous study (1 × 1 × 2 mm; length, width, and height respectively) were compared with grooves measuring 1 × 1 × 1 and 1 × 2 × 1 mm. Biodentine, intermediate restorative material (IRM), and mineral trioxide aggregate (MTA) were evaluated. Each material was placed in the central cavity, and then another glass plate and a metal weight were placed over the cement. The glass plate/material set was scanned using micro-computed tomography. Flow was calculated by linear measurements in the grooves. Central filling was calculated in the central cavity (㎣) and lateral filling was measured up to 2 mm from the central cavity. Results: Biodentine presented the least flow and better filling than IRM when evaluated in the 1 × 1 × 2 model. In a comparison of the test models, MTA had the most flow in the 1 × 1 × 2 model. All materials had lower lateral filling when the 1 × 1 × 2 model was used. Conclusions: Flow and filling were affected by the size of the test models. Higher grooves and materials with greater flow resulted in lower filling capacity. The test model measuring 1 × 1 × 2 mm showed a better ability to differentiate among the materials.

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.

A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials

  • Fernanda Ferrari Esteves Torres;Jader Camilo Pinto;Gabriella Oliveira Figueira;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2021
  • Objectives: New premixed bioceramic root repair materials require moisture for setting. Using micro-computed tomography (micro-CT), this study evaluated the filling ability and volumetric changes of calcium silicate-based repair materials (mineral trioxide aggregate repair high-plasticity [MTA HP] and Bio-C Repair, Angelus), in comparison with a zinc oxide and eugenol-based material (intermediate restorative material [IRM]; Dentsply DeTrey). Materials and Methods: Gypsum models with cavities 3 mm deep and 1 mm in diameter were manufactured and scanned using micro-CT (SkyScan 1272. Bruker). The cavities were filled with the cements and scanned again to evaluate their filling capacity. Another scan was performed after immersing the samples in distilled water for 7 days to assess the volumetric changes of the cements. The statistical significance of differences in the data was evaluated using analysis of variance and the Tukey test with a 5% significance level. Results: Bio-C Repair had a greater filling ability than MTA HP (p < 0.05). IRM was similar to Bio-C and MTA HP (p > 0.05). MTA HP presented the largest volumetric change (p < 0.05), showing more volume loss than Bio-C and IRM, which were similar (p > 0.05). Conclusions: Bio-C Repair is a new endodontic material with excellent filling capacity and low volumetric change. The gypsum model proposed for evaluating filling ability and volumetric changes by micro-CT had appropriate and reproducible results. This model may enhance the physicochemical evaluation of premixed bioceramic materials, which need moisture for setting.

Effectiveness and safety of rotary and reciprocating kinematics for retreatment of curved root canals: a systematic review of in vitro studies

  • Lucas Pinho Simoes;Alexandre Henrique dos Reis-Prado;Carlos Roberto Emerenciano Bueno;Ana Cecília Diniz Viana ;Marco Antonio Hungaro Duarte ;Luciano Tavares Angelo Cintra;Cleidiel Aparecido Araujo Lemos;Francine Benetti
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.22.1-22.18
    • /
    • 2022
  • Objectives: This systematic review (register-osf.io/wg7ba) compared the efficacy and safety of rotary and reciprocating kinematics in the removal of filling material from curved root canals. Materials and Methods: Only in vitro studies evaluating both kinematics during retreatment were included. A systematic search (PubMed/MEDLINE, Scopus, and other databases, until January 2021), data extraction, and risk of bias analysis (Joanna Briggs Institute checklist) were performed. Efficacy in filling removal was the primary outcome. Results: The search resulted in 2,795 studies, of which 15 were included. Efficacy was measured in terms of the remaining filling material and the time required for this. Nine studies evaluated filling material removal, of which 7 found no significant differences between rotary and reciprocating kinematics. Regarding the time for filling removal, 5 studies showed no difference between both kinematics, 2 studies showed faster results with rotary systems, and other 2 showed the opposite. No significant differences were found in apical transportation, centering ability, instrument failure, dentin removed and extruded debris. A low risk of bias was observed. Conclusions: This review suggests that the choice of rotary or reciprocating kinematics does not influence the efficacy of filling removal from curved root canals. Further studies are needed to compare the kinematics safety in curved root canals.

FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL (수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석)

  • Lee, Jae-young;Oh, Tae-Suk;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

Fluoride Release of Several Types of Fluoride-Containing Restorative Materials According to Fluoride Concentration in Toothpaste (치약 내 불소농도에 따른 수종의 불소함유 수복재의 불소 방출량)

  • Chungho, Lee;Jewoo, Lee;Jiyoung, Ra
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • This study was conducted to investigate the fluoride release of fluoride-containing restorative materials in fluoride recharging according to the concentration of fluoride toothpaste used in Korea. Samples of glass ionomer cement, resin-modified glass ionomer cement, alkasite restorative material, and composite resin were prepared and fluoride release was measured on days 1, 3, 7, 14, 21, 28. Thereafter, fluoride-free, 500 ppm, and 1450 ppm fluoride toothpaste was applied to each restorative materials, and the fluoride release was measured on days 1, 3, 7. Glass ionomer cement showed the highest cumulative fluoride release until the 7th day of measurement, and from the 14th day onwards, the resin-modified glass ionomer cement showed the highest cumulative fluoride release, but there was no significant difference. When restorative material groups were recharged with 500 ppm of fluoride toothpaste, the fluoride release was significantly higher only for the alkasite restorative material compared to the fluoride-free toothpaste group (p < 0.017). When restorative material groups were recharged with 1450 ppm of fluoride toothpaste, the fluoride release was significantly higher in all restorative groups compared to the fluoride-free toothpaste group (p < 0.017).

RADIOPACITY OF DENTAL GLASS POLYALKENOATE CEMENTS (치과용 Glass Polyalkenoate cement의 방사선 불투과성에 관한 비교 연구)

  • Rim, Young-Il;Um, Chung-Moon;Lee, Chung-Sik;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.464-469
    • /
    • 1997
  • The radiopacity of glass ionomer cements is quite variable. The use of a poorly radiopaque material as a base under other restorative materials can mislead the dentist to a diagnosis of recurrent decay. This study investigates the radiopacity of these materials and proposes a minimal radiopacity under which a material should not be used as a base or liner. It is important to determine the radiopacity of glass ionomer dental materials so that the clinician can appreciate the type of restorative materials used when radiographically evaluation the possibility of recurrent dental caries. In this study, radiopacity of Vitrement and Chemfil was compared with that of Cavalite, Miracle mix and polycarboxylate cement. Tooth model of artificial cavity preparation for diagnosis of recurrent caries was omitted. Radiopacity of each material was measured using relatives between thickness and radiopacity of Aluminium step wedge. The results were as follows : 1. Radiopacity of Vitrement was some higher than enamel. 2. Chemfil, restorative glass ionomer, was less radiopaque than enamel. 3. In order of higher radiopacity than enamel, Miracle mix was highest and was followed by polycarboxylate cement, Cavalite and Vitremer. 4. Vitremer, the Glass Ionomer Cement, is useful to detection of recurrent caries, because it is slightly higher radiopaque than enamel. So, it is suitable for restorative material and luting cement.

  • PDF