• 제목/요약/키워드: Restorative dental materials

검색결과 554건 처리시간 0.029초

Biocompatibility and bioactive potential of the NeoMTA Plus endodontic bioceramic-based sealer

  • Roberto Alameda Hoshino;Mateus Machado Delfino;Guilherme Ferreira da Silva;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho;Estela Sasso-Cerri;Paulo Sergio Cerri
    • Restorative Dentistry and Endodontics
    • /
    • 제46권1호
    • /
    • pp.4.1-4.16
    • /
    • 2021
  • Objectives: This study evaluated the biocompatibility and bioactive potential of NeoMTA Plus mixed as a root canal sealer in comparison with MTA Fillapex. Materials and Methods: Polyethylene tubes filled with NeoMTA Plus (n = 20), MTA Fillapex (n = 20), or nothing (control group, CG; n = 20) were inserted into the connective tissue in the dorsal subcutaneous layer of rats. After 7, 15, 30 and 60 days, the specimens were processed for paraffin embedding. The capsule thickness, collagen content, and number of inflammatory cells (ICs) and interleukin-6 (IL-6) immunolabeled cells were measured. von Kossa-positive structures were evaluated and unstained sections were analyzed under polarized light. Two-way analysis of variance was performed, followed by the post hoc Tukey test (p ≤ 0.05). Results: At 7 days, the capsules around NeoMTA Plus and MTA Fillapex had more ICs and IL-6-immunostained cells than the CG. However, at 60 days, there was no significant difference in the IC number between NeoMTA Plus and the CG (p = 0.1137) or the MTA Fillapex group (p = 0.4062), although a greater number of IL-6-immunostained cells was observed in the MTA Fillapex group (p = 0.0353). From 7 to 60 days, the capsule thickness of the NeoMTA Plus and MTA Fillapex specimens significantly decreased, concomitantly with an increase in the collagen content. The capsules around root canal sealers showed positivity to the von Kossa stain and birefringent structures. Conclusions: The NeoMTA Plus root canal sealer is biocompatible and exhibits bioactive potential.

Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models

  • Torres, Fernanda Ferrari Esteves;Guerreiro-Tanomaru, Juliane Maria;Chavez-Andrade, Gisselle Moraima;Pinto, Jader Camilo;Berbert, Fabio Luiz Camargo Villela;Tanomaru-Filho, Mario
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.11.1-11.9
    • /
    • 2020
  • Objectives: This study compared the flow and filling of several retrograde filling materials using new different test models. Materials and Methods: Glass plates were manufactured with a central cavity and 4 grooves in the horizontal and vertical directions. Grooves with the dimensions used in the previous study (1 × 1 × 2 mm; length, width, and height respectively) were compared with grooves measuring 1 × 1 × 1 and 1 × 2 × 1 mm. Biodentine, intermediate restorative material (IRM), and mineral trioxide aggregate (MTA) were evaluated. Each material was placed in the central cavity, and then another glass plate and a metal weight were placed over the cement. The glass plate/material set was scanned using micro-computed tomography. Flow was calculated by linear measurements in the grooves. Central filling was calculated in the central cavity (㎣) and lateral filling was measured up to 2 mm from the central cavity. Results: Biodentine presented the least flow and better filling than IRM when evaluated in the 1 × 1 × 2 model. In a comparison of the test models, MTA had the most flow in the 1 × 1 × 2 model. All materials had lower lateral filling when the 1 × 1 × 2 model was used. Conclusions: Flow and filling were affected by the size of the test models. Higher grooves and materials with greater flow resulted in lower filling capacity. The test model measuring 1 × 1 × 2 mm showed a better ability to differentiate among the materials.

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • 제39권3호
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

Light transmittance of CAD/CAM ceramics with different shades and thicknesses and microhardness of the underlying light-cured resin cement

  • Jafari, Zahra;Alaghehmand, Homayoon;Samani, Yasaman;Mahdian, Mina;Khafri, Soraya
    • Restorative Dentistry and Endodontics
    • /
    • 제43권3호
    • /
    • pp.27.1-27.9
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the effects of the thickness and shade of 3 types of computer-aided design/computer-aided manufacturing (CAD/CAM) materials. Materials and Methods: A total of 120 specimens of 2 shades (A1 and A3) and 2 thicknesses (1 and 2 mm) were fabricated using VITA Mark II (VM; VITA Zahnfabrik), IPS e.max CAD (IE; IvoclarVivadent), and VITA Suprinity (VS; VITA Zahnfabrik) (n = 10 per subgroup). The amount of light transmission through the ceramic specimens was measured by a radiometer (Optilux, Kerr). Light-cured resin cement samples (Choice 2, Bisco) were fabricated in a Teflon mold and activated through the various ceramics with different shades and thicknesses using an LED unit (Bluephase, IvoclarVivadent). In the control group, the resin cement sample was directly light-cured without any ceramic. Vickers microhardness indentations were made on the resin surfaces (KoopaPazhoohesh) after 24 hours of dark storage in a $37^{\circ}C$ incubator. Data were analyzed using analysis of variance followed by the Tukey post hoc test (${\alpha}=0.05$). Results: Ceramic thickness and shade had significant effects on light transmission and the microhardness of all specimens (p < 0.05). The mean values of light transmittance and microhardness of the resin cement in the VM group were significantly higher than those observed in the IE and VS groups. The lowest microhardness was observed in the VS group, due to the lowest level of light transmission (p < 0.05). Conclusion: Greater thickness and darker shades of the 3 types of CAD/CAM ceramics significantly decreased the microhardness of the underlying resin cement.

Stimulatory Effect of N-acetylcysteine on Odontoblastic Differentiation

  • Jun, Ji-Hae;Lee, Hye-Lim;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.187-195
    • /
    • 2008
  • Reparative dentine formation requires newly differentiated odontoblast-like cells. Therefore, identification of the molecule that stimulates the odontogenic differentiation of precursor cells in the tooth pulp will be helpful for the development of strategies to repair damaged pulp. In this study, we examined the effect of N-acetylcysteine (NAC) on the odontogenic differentiation of MDPC-23 cells, a mouse odontoblast-like cell line derived from dental papilla, and primary cultured rat dental papilla cells (RDPCs). NAC (1-30 mM) suppressed production of reactive oxygen species in MDPC-23 cells in a dose-dependent manner. Although 5 to 20 mM NAC did not alter MDPC-23 cell proliferation, 1 or 30 mM NAC significantly inhibited it. NAC enhanced mineralized nodule formation and the expression of several odontoblast differentiation-associated genes in both RDPCs and MDPC-23. This NAC stimulatory effect was significant, even at concentrations lower than 1 mM. However, NAC did not stimulate expression of bone morphogenetic protein-2, -4, or -7, which are known to enhance odontogenic differentiation. Since reactive oxygen species are also involved in the pulp toxicity of resin-based restorative materials, these results suggest that NAC may be a promising candidate for supplementation of dental restorative materials in order to enhance reparative dentine formation.

Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

  • Kasraei, Shahin;Sami, Lida;Hendi, Sareh;AliKhani, Mohammad-Yousef;Rezaei-Soufi, Loghman;Khamverdi, Zahra
    • Restorative Dentistry and Endodontics
    • /
    • 제39권2호
    • /
    • pp.109-114
    • /
    • 2014
  • Objectives: Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods: Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at $37^{\circ}C$ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results: Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions: Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • 제38권3호
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

임상가를 위한 특집 1 - 치과심미수복용 세라믹의 최신 특성평가 (Recent characteristics of dental esthetic restorative ceramics)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제51권1호
    • /
    • pp.6-11
    • /
    • 2013
  • Dental ceramics is well known to have excellent esthetics, biocompatibility as well as high compressive strength. However, the fragility of ceramics against tensile and shear loads leading to the delayed fracture of micro crack on ceramic surface and the backwardness of ceramic fabrication technique limit the usage of ceramic materials in dentistry. Among all ceramic materials, zirconia has been introduced to overcome the drawback of conventional dental ceramics in the field of dentistry due to the nature of zirconia featuring proper opalescence and high fracture toughness. Also, novel manufacturing techniques enable ceramic materials to prepare high esthetic anterior and posterior all ceramic system. In this paper, it is introduced and discussed that novel techniques characterizing the bond strength between zirconia core and veneering ceramics and analyzing the fluorescence of dental ceramics in order to overcome the gap between the results of basic research and the feasibility of the results in the field of dental clinics.

pH 순환 모형을 이용하여 15% 과산화요소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 거칠기에 미치는 영향 (The effect of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model)

  • 박소영;송민지;전수영;김선영;심연수
    • 한국치위생학회지
    • /
    • 제13권2호
    • /
    • pp.351-360
    • /
    • 2013
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM). were used in the study. Eighty-eight specimens of each material were fabricated, randomly divided into two groups(n=44): experimental group(15% carbamide peroxide) and control group(distilled water). These groups were then divided into four subgroups(n=11). All groups were bleached 4 hours per day for 14 days using pH cycling model. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : Z350 and P60 showed a slight color change(${\Delta}E^*$), whereas DY and KM showed significantly color change(p<0.05). Among them, the greatest color change was observed in DY. Percentage microhardness loss(PML) of the distilled water group was 1.8 to 5.1%, and 15% peroxide peroxide group was 5.0 to 25.2%. Microhardness of DY and KM showed a statistically significant decrease(p<0.05). Roughness was increased in all groups after bleaching. Z350 and P60 does not have a significant difference(p>0.05), however DY and KM significantly increased more than the 0.2 ${\mu}m$(p<0.05). Conclusions : The effects of bleaching on restorative materials were material dependent. It is necessary to consider the type of the material before starting the treatment.

치과 캐드캠 시스템에서 사용되는 고분자 수복재료들의 표면특성과 접착양상 (Surface characteristics and bonding performance of polymer restorative materials for dental CAD/CAM systems)

  • 김재홍;김기백
    • 대한치과기공학회지
    • /
    • 제41권3호
    • /
    • pp.203-209
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the mechanical properties of polymer prosthetic and restorative materials for dental CAD/CAM using two test method; surface characteristics and shear bond strength. Methods: Commercialized CAD/CAM polymer blanks were investigated; One kinds of PMMA, and one PEKK blanks. A total of 20 PMMA and PEKK specimens were prepared, and each group was divided into 10 specimens. Average surface roughness was observed under surface profilometer. The contact angle was measured with a surface electrooptics. The bond strength was evaluated by a universal testing machine at a crosshead speed of 5mm/min. The data were statistically analyzed using independent t-test and Fisher's exact test(P<0.05). Results: The PMMA and PEKK group showed a significant difference in the shear bond strength with the composite resin(P<0.05). The surface roughness of the PEKK group was higher than that of the PMMA group. The fracture mode were observed in PEKK groups with 50% showing adhesive remnant index score. Conclusion: PEEK is used as substructure material and composite veneering material is applied. PEKK resins will contribute to the development of successful products that will provide structural and aesthetic satisfaction.