• 제목/요약/키워드: Response to climate changes

검색결과 169건 처리시간 0.025초

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

Consumers' awareness and behavior intention on meat consumption according to climate change

  • Lim, Kwon-Taek;Park, Jaehong
    • 농업과학연구
    • /
    • 제44권2호
    • /
    • pp.296-307
    • /
    • 2017
  • Globally, consumers' enormous and increasing appetite for meat is one of the biggest causes of climate change because livestock industry emits more greenhouse gas than transportation. The purpose of this study is to analyze consumer awareness about the impact of meat consumption on sustainability in response to climate change. Based on the theory of planned behavior, the attitudes, subjective norms, perceived behavioral control, prior knowledge, and risk perception variables were analyzed to evaluate the impact of climate change awareness over consumer behavior on meat consumption. Major findings are as follows: consumers were aware of climate change but has made few changes to their meat consumption. In addition, changes in meat consumption were found to be caused by health safety concerns, such as disease outbreaks. Significant variables related to meat consumption patterns associated to climate change impacts were household income, age, attitude, subjective norm, perceived behavioral control, and prior knowledge. These results suggest some implications for policy. There is a need for public relations and education to make the public aware of and better understanding of link between climate change and diet. Also, government should make efforts to raise awareness of mitigation of climate change such as comprehensive food labels which are identifying lesser impacts on climate and better dietary guideline instructions which would include coping with climate change.

기후변화 대응 건축물 기화냉각시스템 적용에 따른 외부 열환경 변화 연구 (Changes in the External Heat Environment of Building Evaporative Cooling Systems in Response to Climate Change)

  • 윤용한;권기욱
    • 한국환경과학회지
    • /
    • 제27권12호
    • /
    • pp.1261-1269
    • /
    • 2018
  • The purpose of this study was to investigate changes in the external thermal environment, following the application of evaporative cooling systems in buildings, in response to climate change. In order to verify changes in the external thermal environment, a T-test was performed on the microclimate, Thermal Comfort Index (TCI), and building surface temperature. Differences in microclimate, following the application of the evaporative cooling system in the building, were significant in terms of temperature and relative humidity. In particular, temperature decreased by more than 7% when the evaporative cooling system was applied. According to the results of the Thermal Comfort Index analysis, the Wet-Bulb Globe Temperature (WBGT) was below the limit of outdoor activities, indicating that outdoor activities were possible. The Universal Thermal Climate Index (UTCI) values were within the very strong heat stress range when the evaporative cooling system was not applied, When the system was applied, the UTCI values were within the strong heat stress range, indicating that they were lowered by one level. The building surface temperature decreased by ~10% or more when the evaporative cooling system was applied, compared to when it was not applied. Finally, the outside surface temperature of the building decreased by ~12% or more when the system was applied, compared to when it was not applied. We conclude that the energy saving effect of the building was significant.

기후변화에 대비한 환경연구의 방향 (Consideration on new research direction in marine environmental sciences in relation to climate change)

  • 김수암
    • 환경정책연구
    • /
    • 제1권1호
    • /
    • pp.1-24
    • /
    • 2002
  • Due to the recent increase in greenhouse gases in atmosphere, world climate is rapidly changing and in turn, the earth ecosystem responds upon the climate changes. Comparing the ecosystem in the past, the present shapes of ecosystem is the result of the serious modification. Fishery resources in marine ecosystem, which usually occupy the upper trophic level, are also inevitable from such changes, because they always react to the natural environmental conditions. The northwestern Pacific is the most productive ocean in the world producing about 30% of world catch. From time to time, however, it has been notified that abundance, distribution and species composition of major fish species were altered by climate events. Furthermore, primary productivity of the ocean is not stable under the changing environments, so that carrying capacity of the ocean varies from one climate regime to another. Major climate events such as global warming, atmospheric circulation pattern, climate regime shift in the North Pacific, and El Nino event in the Pacific tropical waters were introduced in relation to fisheries aspects. The current status and future projection of fishery production was investigated, especially in the North Pacific including Korean waters. This new paradigm, ecosystem response to environmental variability, has become the main theme in marine ecology and fishery science, and the GLOBEC-type researches might provide a solution far cause-effect mechanism as well as prediction capability. Ecosystem management principles for multi-species should be adopted for better understanding and management of ecosystem.

  • PDF

Sensitivity Analysis of High and Low Flow Metrics to Climate Variations

  • Kim, Jong-Suk;Jang, Ho-won;Hong, Hyun-Pyo;Lee, Joo-Heon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.355-355
    • /
    • 2018
  • Natural hydrology systems, including high flow and low flow events, are important for aquatic ecosystem health and are essential for controlling the structure and function of ecological processes in river ecosystems. Ecosystem responses to flow changes have been studied in a variety of ways, but little attention has been given to how episodic typhoons and atmospheric circulation patterns can change these hydrologic regime-ecological response relationships. In this diagnostic study, we use an empirical approach to investigate the salient features of interactions between atmospheric circulation, climate, and runoff in the five major Korean river basins.

  • PDF

IPCC 제5차 과학평가보고서 고찰 (In-depth Review of IPCC 5th Assessment Report)

  • 박일수;장유운;정경원;이강웅;;권원태;윤원태
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.188-200
    • /
    • 2014
  • The IPCC 5th Assessment Report (Climate Change 2013: The Physical Science Basis) was accepted at the 36th Session of the IPCC on 26 September 2013 in Stockholm, Sweden. It consists of the full scientific and technical assessment undertaken by Working Group I. This comprehensive assessment of the physical aspects of climate change puts a focus on those elements that are relevant to understand past, document current, and project future of climate change. The assessment builds on the IPCC Fourth Assessment Report and the recent Special Report on Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. The assessment covers the current knowledge of various processes within, and interactions among, climate system components, which determine the sensitivity and response of the system to changes in forcing, and they quantify the link between the changes in atmospheric constituents, and hence radiative forcing, and the consequent detection and attribution of climate change. Projections of changes in all climate system components are based on model simulations forced by a new set of scenarios. The report also provides a comprehensive assessment of past and future sea level change in a dedicated chapter. The primary purpose of this Technical Summary is to provide the link between the complete assessment of the multiple lines of independent evidence presented in the main report and the highly condensed summary prepared as Policy makers Summary. The Technical Summary thus serves as a starting point for those readers who seek the full information on more specific topics covered by this assessment. Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased. Total radiative forcing is positive, and has led to an uptake of energy by the climate system. The largest contribution to total radiative forcing is caused by the increase in the atmospheric concentration of $CO_2$ since 1750. Human influence on the climate system is clear. This is evident from the increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming, and understanding of the climate system. Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions. The in-depth review for past, present and future of climate change is carried out on the basis of the IPCC 5th Assessment Report.

기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향 (Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models)

  • 최아라;박영규;최희진
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

김·미역 양식의 기후변화 피해비용 분석 (Analysis of the Costs of Climate Change Damage to Laver and Sea Mustard Aquaculture in Korea)

  • 윤유진;김봉태
    • 수산경영론집
    • /
    • 제54권2호
    • /
    • pp.045-058
    • /
    • 2023
  • This study aims to analyze the cost of climate change damages to laver and sea mustard aquaculture, which are considered to be highly vulnerable to climate change in Korea. For this purpose, the correlation between aquaculture production and climate factors such as water temperature, salinity, air temperature, and precipitation was estimated using a panel regression model. The SSP scenario was applied to predict the changes in production and damage costs due to changes in future climate factors. As a result of the analysis, laver production is predicted to decrease by 18.0-27.2% in 2050 and 20.6-61.6% in 2100, and damage costs are predicted to increase from 29.7-50.8 billion KRW in 2050 to 35.7-116.1 billion KRW in 2100. Sea mustard production is projected to decrease by 24.5-37.2% in 2050 and 24.0-34.5% in 2100, with similar damage costs of 41.1-61.8 billion KRW and 41.1-58.6 billion KRW, respectively. These damage costs are expected to occur in the short term as damage caused by fishery disasters such as high temperatures, and in the long term as a decrease in production due to changes in aquaculture sites. Therefore, measures such as strengthening the forecasting system to prevent high-temperature damage, developing high-temperature-resistant varieties, and relocating fishing grounds in response to changes in aquaculture sites will be necessary.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권2호
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

Mitochondrial COI sequence-based population genetic analysis of the grasshopper, Patanga japonica Bolívar, 1898 (Acrididae: Orthoptera), which is a climate-sensitive indicator species in South Korea

  • Jee-Young Pyo;Jeong Sun Park;Seung Hyun Lee;Sung-Soo Kim;Heon Cheon Jeong;Iksoo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제47권2호
    • /
    • pp.99-114
    • /
    • 2023
  • Patanga japonica Bolívar, 1898 (Orthoptera: Acrididae) is listed as a climate-sensitive indicator species in South Korea and is called southern group of insects in that the main distributional range is southern region of South Korea and Asian continent. In South Korea, thus, the species was distributed mainly in southern region of South Korea including southward a remote Jeju Island, but recently the species has often been detected in mid to northern region of South Korea, implying northward range expansion in response to climate change. Understanding the characteristics of the changes in genetic diversity during range expansion in response to climate change could be a foundation for the understanding of future biodiversity. Thus, in this study, we attempted to understand the changing pattern of the genetic diversity of the P. japonica in newly expanded regions. For the purpose of study, we collected 125 individuals from seven localities throughout South Korea including two newly distributed regions (Pyeongtaek and Yeongwol at ~37° N). These were sequenced for a segment of mitochondrial cytochrome oxidase subunit I (COI) and analyzed for genetic diversity, haplotype frequency, and population genetic structure among populations. Interestingly, northward range expansion accompanied only haplotypes, which are most abundant in the core populations, providing a significant reduction in haplotype diversity, compared to other populations. Moreover, genetic diversity was still lower in the expanded regions, but no genetic isolation was detected. These results suggest that further longer time would take to reach to the comparable genetic diversity of preexisting populations in the expanded regions. Probably, availability of qualified habitats at the newly expanded region could be pivotal for successful northward range expansion in response to climate change.