• Title/Summary/Keyword: Response loop

Search Result 666, Processing Time 0.029 seconds

The Derivation of the Energy Function reflecting Governor's Integral Control Loop, and Direct Stability Analysis (조속기 적분제어회로를 고려한 에너지함수 유도 및 과도안정도 해석)

  • Ryu, H.S.;Lee, E.H.;Kim, B.;Oh, Y.T.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.92-94
    • /
    • 1995
  • In this paper, the derivation of the energy function reflecting the governor's integral control loop is presented. When integral control is considered we obtain oscillatory response of the loop at the price of reducing frequency error. In other words, as $K_I$ is inclosed, the region of stability is decresed. When derived energy function is applied to the one machine infinite bus system, we showed that this function can be used to assess stability.

  • PDF

Speed Controller Design Based on Current Controller Dynamics for Industry Servo Applications (전류제어기 동특성을 고려한 산업용 서보 구동시스템의 속도제어기 설계)

  • Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.166-169
    • /
    • 2002
  • The purpose of this paper is to develop systematic analysis and automatic tuning rule of PID controller for industry servo applications. Considering the coupling of inner current control loop and speed loop delay, the target plant fit into second-order plus time delay model. Based on PID controller design for high-order plus known/unknown time delay plant model, some formulars are provided for the control gain calculation and system-based theoretical analysis is developed, and it also allows an automatic controller setup to benefit the inexperienced user. In addition, the proposed design rule gives uniformly satisfactory performance and the motor speed stays on a desired response curve with minimal oscillation and settling time. This approach can be applicable in conjunction with the cascaded control loop which is widely used in practice.

  • PDF

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

A Basic Study on the Measurement Induced Voltages due to Lightning Discharges (뇌방전에 의한 유도전압의 측정에 대한 기초적 연구)

  • Lee, Bok-Hee;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Woo-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.559-564
    • /
    • 2004
  • This paper deals with the device for measuring the time-varying magnetic fields and induced voltages caused by lightning discharges. The two magnetic field measuring systems were designed and made. One consists of the loop-type magnetic field sensor with the active integrator operated by a differential amplifier. The other consists of the loop-type magnetic field sensor and Labview software. The loop-type magnetic field sensor detects the time derivative of the magnetic field being measured, and the signal detected is integrated by the Labview software. As a consequence, from the calibration experiments, the frequency bandwidth of the full measuring system ranges from 400 [Hz] to 1 (MHz) and the response sensitivity are 0.98 (mV/nT) and 22 (mV/nT) for the magnetic field sensor of 2 turns and 6 turns, respectively. Also, the results obtained by the two measuring devices well agreed with each other.

  • PDF

Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator (EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

Model updation using multiple parameters influencing servoelastic response of a flexible aircraft

  • Srinivasan, Prabha;Joshi, Ashok
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.185-202
    • /
    • 2017
  • In a flexible airvehicle, an assessment of the structural coupling levels through analysis and experiments provides structural data for the design of notch filters which are generally utilized in the flight control system to attenuate the flexible response pickup. This is necessitated as during flight, closed loop control actuation driven with flexible response inputs could lead to stability and performance related problems. In the present work, critical parameters influencing servoelastic response have been identified. A sensitivity study has been carried out to assess the extent of influence of each parameter. A multi-parameter tuning approach has been implemented to achieve an enhanced analytical model for improved predictions of aircraft servoelastic response. To illustrate the model updation approach, initial and improved test analysis correlation of lateral servoelastic responses for a generic flexible airvehicle are presented.

Response Analysis of Data Acquired by Marine Loop Electromagnetic System Using Three-Dimensional Modeling Based on Integral Equation (적분방정식 기반의 3차원 모델링을 이용한 소형 루프형 해양 전자탐사 자료의 반응 분석)

  • Ko, Hwicheol;Park, In Hwa;Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • We analyzed response patterns of test field data acquired with new small loop electromagnetic (EM) system using three-dimensional (3D) electromagnetic modeling code. The size and shape of a conductor was adopted as experimental parameters for EM modeling to understand influencing factors of the response patterns due to a metallic object on the seafloor. Obtaining the responses for four models of difference sizes and shapes through 3D EM modeling, we confirmed that the shape of the object have a more critical factor on the response pattern than size. We also calculated "ppm" values with respect to different altitudes of the sensor and source frequencies. The modeling results show that the consistency of sensor altitude is important and imaginary part of ppm response is more sensitive than real part. We also visualized the contour map of the real and imaginary part of ppm value as a function of frequency and altitude so that we can estimate proper altitude for source frequency band of our survey system. The results of this paper are anticipated to give proper parameters in survey construction for seafloor massive sulfide deposit.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.