• Title/Summary/Keyword: Response and capacity

Search Result 1,681, Processing Time 0.032 seconds

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

Simulation Analysis for Configuring Web Clusters (웹 클러스터 구성을 위한 시뮬레이션 분석)

  • Kang, Sung-Yeol;Song, Young-Hyo
    • Journal of Digital Convergence
    • /
    • v.6 no.2
    • /
    • pp.117-125
    • /
    • 2008
  • High-volume web sites often use clusters of servers with load balancing as a way to increase the performance, scalability, and availability of the sites. Load balancing, usually performed by load balancer in front of such clusters, is a technique to spread workload between several computers or resources, in order to get optimal resource utilization or response time. In this paper we examine the performance for several configurations of cluster-based web servers using a simulation approach. We investigate two types of buffering scheme (common and local) for web clusters and three load balancing policies (uniformly random, round robin, and least queue first), using response time as a performance measure. We also examine two basic approaches of scaling web clusters: adding more servers of same type or upgrading the capacity of the servers in the clusters.

  • PDF

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.

The Impact of Entrepreneurial Orientation, and Absorptive Capacity on Corporate Performance between Platform Companies and General Companies in SMEs: Moderating Role of Organizational Resilience (중소 플랫폼기업과 일반기업의 기업가지향성, 흡수역량이 기업성과에 미치는 영향: 조직회복탄력성의 조절효과를 중심으로)

  • Lee, Jae-Hyung;Lee, Jung-Hoon;Nam, Dongkyun
    • Journal of Technology Innovation
    • /
    • v.31 no.2
    • /
    • pp.303-332
    • /
    • 2023
  • This study comprises critical questions of "What kinds of intangible resources are significant to create and reinforce competitive advantages for the small and medium-sized enterprises(SMEs) that significantly influence the national economy? What kinds of capacities do SMEs need in consideration with the large changes in market environment and during crisis? With large changes to market environment, would different capacities affect performance of platform and general SMEs?" To examine these questions, I have provided Entrepreneurial Orientation, Absorptive Capacity, and Organizational Resilience as key capacities that influence the competitive advantage and performance of SMEs. In particular, I have substantiated the control effect of Organizational Resilience (a rising key capacity for enterprises in recent times) on Corporate Performance. Moreover, I have analyzed the control effect of Organizational Resilience on Corporate Performance by comparing platform and general companies, and also substantiated how control effects may vary depending on sub-factors of Organizational Resilience. The results of this study indicate that Entrepreneurial Orientation and Absorptive Capacity significantly and positively influence Corporate Performance. Organizational Resilience also demonstrate a positive influence on Corporate Performance. Notably, sub-factors of Organizational Resilience (risk preparation capacity, risk response capacity, and change initiative capacity) significantly control correlation between Entrepreneurial Orientation and Corporate Performance. Risk preparation capacity and change initiative capacity significantly control correlation between Absorptive Capacity and Corporate Performance. Additionally, the control effect of risk preparation capacity significantly control correlation between Entrepreneurial Orientation and Corporate Performance. Also, the control effect of risk response capacity correlations between Entrepreneurial Orientation and Corporate Performance demonstrated themselves significantly only in platform enterprises. The study's results indicate that Organizational Resilience not only directly influence Corporate Performance, but also strengthens Corporate Performance via mutual interaction with Entrepreneurial Orientation and Absorptive Capacity, although the control effect of Organizational Resilience may vary between platform enterprises and general enterprises. I expect such results to provide practical value to the management of small and medium-sized enterprises (SMEs).

Probabilistic capacity spectrum method considering soil-structure interaction effects (지반-구조물 상호작용 효과를 고려한 확률론적 역량스펙트럼법)

  • Nocete, Chari Fe M.;Kim, Doo-Kie;Kim, Dong-Hyawn;Cho, Sung-Gook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-70
    • /
    • 2008
  • The capacity spectrum method (CSM) is a deterministic seismic analysis approach wherein the expected seismic response of a structure is established as the intersection of the demand and capacity curves. Recently, there are a few studies about a probabilistic CSM where uncertainties in design factors such as material properties, loads, and ground motion are being considered. However, researches show that soil-structure interaction also affects the seismic responses of structures. Thus, their uncertainties should also be taken into account. Therefore, this paper presents a probabilistic approach of using the CSM for seismic analysis considering uncertainties in soil properties. For application, a reinforced concrete bridge column structure is employed as a test model. Considering the randomness of the various design parameters, the structure's probability of failure is obtained. Monte Carlo importance sampling is used as the tool to assess the structure's reliability when subjected to earthquakes. In this study, probabilistic CSM with and without consideration of soil uncertainties are compared and analyzed. Results show that the analysis considering soil structure interaction yields to a greater probability of failure, and thus can lead to a more conservative structural design.

  • PDF

Performance Analysis of an Intelligent Peripheral System in Advanced Intelligent Network (시뮬레이션을 통한 AIN IP 시스템의 호처리용량 분석)

  • Suh, Jae-Joon;Choi, Go-Bang;Yeo, Kun-Min;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.77-87
    • /
    • 1998
  • Intelligent Peripheral(IP) system is to provide specialized resource functions (SRF) such as playing announcement, collecting user information, and receiving messages in the Advanced Intelligent Network (AIN). We analyze the call processing capacity of an AIN IP system being developed in ETRI through an extensive simulation using SLAM II under a variety of AIN service scenarios. We consider televoting (VOT) and universal personal telecommunication (UPT) services which are to be provided at the fit implementation of the AIN in Korea. As the performance criteria to determine the call processing capacity, processor utilization, delay and call loss probability are considered. It turns out that the major processor called SAMP is the bottleneck processor, the service response delay dominates the delay performance, and the call loss probability becomes the primary criterion in determining the call processing capacity of the AIN IP system. It is also shown that the call processing capacity of the AIN IP system is determined by the utilization of the processor and the delay performance when the VOT ratio is below 70 percent but it is determined by the call loss probability due to the lack of service channels for providing the SRF operations.

  • PDF