• 제목/요약/키워드: Response Surface Optimization

검색결과 1,444건 처리시간 0.031초

반응면 기법을 이용한 램 가속기 최적설계에 관한 연구 (Ram Accelerator Optimization Using the Response Surface Method)

  • 전권수;전용희;이재우;변영환
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.55-63
    • /
    • 2000
  • In this paper, the numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length, required to accelerate projectile from initial velocity V/sub 0/ to target velocity V/sub e/. The premixture is composed of H₂, O₂, N₂ and the mole numbers of these species are selected as design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and the efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error compared with analysis result is only 0.01% and it is demonstrated that present method can be applied to more practical design optimization problems with many design variables.

  • PDF

응답량 재사용을 통한 순차 근사최적설계 (A Sequential Approximate Optimization Technique Using the Previous Response Values)

  • 황태경;최은호;임오강
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.

Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology

  • Khan, Asaduzzaman;Do, Jeongyun;Kim, Dookie
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.629-638
    • /
    • 2016
  • Optimization of the concrete mixture design is a process of search for a mixture for which the sum of the cost of the ingredients is the lowest, yet satisfying the required performance of concrete. In this study, a statistical model was carried out to model a cost effective optimal mix proportioning of high strength self-compacting concrete (HSSCC) using the Response Surface Methodology (RSM). The effect of five key mixture parameters such as water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content on the properties and performance of HSSCC like compressive strength, passing ability, segregation resistance and manufacturing cost were investigated. To demonstrate the responses of model in quadratic manner Central Composite Design (CCD) was chosen. The statistical model showed the adjusted correlation coefficient R2adj values were 92.55%, 93.49%, 92.33%, and 100% for each performance which establish the adequacy of the model. The optimum combination was determined to be $439.4kg/m^3$ cement content, 35.5% W/B ratio, 50.0% fine aggregate, $49.85kg/m^3$ fly ash, and $7.76kg/m^3$ superplasticizer within the interest region using desirability function. Finally, it is concluded that multiobjective optimization method based on desirability function of the proposed response model offers an efficient approach regarding the HSSCC mixture optimization.

삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

대형 설계 시스템의 효율적 반응표면 근사화를 위한 점진적 이차 근사화 기법 (Progressive Quadratic Approximation Method for Effective Constructing the Second-Order Response Surface Models in the Large Scaled System Design)

  • 홍경진;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3040-3052
    • /
    • 2000
  • For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.

RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (I) (A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (I))

  • 우성현;정현구;신판석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.65-67
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and ($1+{\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to set a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6MW BLDC motor.

  • PDF

반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계 (Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology)

  • 이장원;심호경;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

반응표면법을 이용한 최소동작시간을 갖는 DC 솔레노이드 밸브의 형상 최적 설계 (Shape Optimization of DC Solenoid Valve to Minimize the Time of Action Using Response Surface Method)

  • 윤희성;황인성;김동수;윤소남;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권9호
    • /
    • pp.449-458
    • /
    • 2006
  • In general, a DC solenoid valve is evaluated by the performances such as the attraction force at maximum and minimum strokes, temperature rising, power consumption and time of action. The importance of each performance may be different according to the specific application purpose. When the temperature rising and power consumption are fixed, however, the performance of DC solenoid valve is usually evaluated by the attraction force at maximum and minimum strokes and time of action. In this paper, the shape of the pole face of plunger and core is optimized to increase the attraction force at maximum stroke, and thereby to minimize the time of action. For the shape optimization, (1+1) evolution strategy is incorporated with the response surface method(RSM) and finite element method(FEM).

RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (II) (A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (II))

  • 우성현;정현구;신판석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.701-702
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and (1+${\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to get a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6 MW BLDC motor, and the cogging torque is reduced to 19% of the initial one.

  • PDF

반응면기법을 이용한 침전조의 형상최적설계 (Shape Optimization of Sedimentation Tank Using Response Surface Method)

  • 김홍민;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.