• 제목/요약/키워드: Response Surface Methodology (RSM)

Search Result 743, Processing Time 0.031 seconds

Optimization of Extrusion Cooking Conditions for the Preparation of Seasoning from Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 조미소재 제조를 위한 Extrusion Cooking 공정의 최적화)

  • Shin, Eui-Cheol;Kwak, Dongyun;Ahn, Soo-Young;Kwon, Sangoh;Choi, Yunjin;Kim, Dongmin;Choi, Gibeom;Boo, Chang-Guk;Kim, Seon-Bong;Kim, Jin-Soo;Lee, Jung Suck;Cho, Suengmok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.823-833
    • /
    • 2020
  • The Manila clam Ruditapes philippinarum, is an important marine bivalve that is widely distributed along the west and north coasts of South Korea. It has been used in a variety of Korean foods owing to its superior umami taste. In the present study, we developed a flavoring with an excellent sensory preference from Manila clam using extrusion cooking processing. Optimization of extrusion cooking conditions was performed using response surface methodology (RSM). Barrel temperature (X1, 140-160℃) and screw speed (X2, 400-560 rpm) of the extruder were chosen as independent variables. The dependent variable was overall acceptance (Y, points). The estimated optimal conditions were as follows: overall acceptance (Y): X1=140℃ and X2=560 rpm. The indicated value of the dependent variable overall acceptance (Y) under the optimal conditions was 8.94 points, which was similar to the experimental value (8.82 points). Overall acceptance of the Manila clam flavoring was related to its umami and Manila clam tastes. The electronic nose and tongue results successfully segregated different clusters of the samples between the lowest and highest sensory scores. The sample with the highest sensory score had higher sourness, umami, and sweetness intensities, and the lowest sensory scored sample showed more off-flavor compounds.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

Optimization of Compound K Production from Ginseng Extract by Enzymatic Bioconversion of Trichoderma reesei (Trichoderma reesei 유래 산업효소를 이용한 인삼추출물로부터 Compound K 생산 최적화)

  • Han, Gang;Lee, Nam-Keun;Lee, Yu-Ri;Jeong, Eun-Jeong;Jeong, Yong-Seob
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.570-578
    • /
    • 2012
  • Compound K(ginsenoside M1) is one of saponin metabolites and has many benefits for human health. This study was to investigate Compound K produced from ginseng crude saponin extract with commercial cellulolytic complex enzyme(cellulase, ${\beta}$-glucanase, and hemicellulase) obtained from Trichoderma reesei. The effect factors(temperature, pH, ginseng crude saponin extract and enzyme concentration, and reaction time) on production of Compound K from ginseng crude saponin extract were determined by one factor at a time method. The selected major factor variables were ginseng crude saponin extract of 2%(w/v), enzyme of 7%(v/v), reaction time of 48 hr. Based on the effect factors, response surface method was proceeded to optimize the enzymatic bioconversion conditions for the desirable Compound K production under the fixed condition of pH 5.0 and $50^{\circ}C$. The optimal reaction condition from RSM was ginseng crude saponin extract of 2.38%, enzyme of 6.06%, and reaction time of 64.04 hr. The expected concentration of Compound K produced from that reaction was 840.77 mg/100 g. Production of Compound K was 1,017.93 mg/100 g and 862.31 mg/100 g, by flask and bench-scale bioreactor($2.5{\ell}$) system, respectively.

Development of a Rapid Enrichment Broth for Vibrio parahaemolyticus Using a Predictive Model of Microbial Growth with Response Surface Analysis (미생물 생장 예측모델과 반응표면분석법을 이용한 Vibrio parahaemolyticus의 신속 증균배지 개발)

  • Yeon-Hee Seo;So-Young Lee;Unji Kim;Se-Wook Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.449-456
    • /
    • 2023
  • In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)-mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37℃. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

Optimization of Microwave-Assisted Process for Extraction of Effective Components from Mosla dinthera M. (마이크로파 추출공정에 의한 쥐깨풀 유용성분의 추출조건 최적화)

  • Lee Eun-Jin;Kwon Young-Ju;Noh Jung-Eun;Lee Jeong-Eun;Lee Sung-Ho;Kim Jae-Keun;Kim Kwang-Soo;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Response surface methodology (RSM) was applied to microwave-assisted process (MAP) extraction for effective components from Mosla dianthera M. Microwave power (2,450 MHz, 0-160 W) and extraction time (1-5 min) were used as independent variables ($X_i$) for central composite design to yield 10 different extraction conditions. Optimum conditions were predicted for dependent variables of $75\%$ ethanol extracts, such as total yield($Y_1$), total phenolics($Y_2$), total flavonoids($Y_3$), and electron donation ability($Y_4$, EDA). Determination coefficients ($R^2$) of regression equations for dependent variables ranged from 0.8397 to 0.9801, and microwave power was observed to be more influential than extraction time in MAP. The maximal values of each dependent variable predicted at different extraction conditions of microwave power (W) and extraction time (min) were as follows; $6.76\%$ of total yield at 142.00 W and 4.36 min, 78.68 mg/g of total phenolics at 136.78 W and 4.40 min, 6.75 mg/g of total flavonoids at 159,69 W and 3.17 min, and $49.81\%$ of EDA at 133.87 W and 4.47 min, respectively. The superimposed contour maps for maximizing dependent variables illustrated the MAP conditions of 79 to 113 W in power and of 2.73 to 3.84 min in extraction time.

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF

Optimization of Enzyme Treatment Condition for Clarification of Pomegranate Extract (석류추출액의 청징화를 위한 효소처리조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Cha, Tae-Yang;Kang, Bok-Hee;Lee, Jin-Hyung;Kim, Jong-Myung;Song, Kyung-Sik;Song, Bang-Ho;Kim, Jong-Guk;Lee, Jin-Man
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.240-245
    • /
    • 2005
  • Response surface methodology was used to investigate clarification characteristics (turbidity, brown color, soluble solid, total sugar and reducing sugar) of enzyme in pomegranate extract. Enzyme was treated at 16 conditions including independent variables of temperature ($35{\sim}55^{\circ}C$), time ($30{\sim}70\;min$) and concentration ($0.02{\sim}0.10%$) based on central composition design. Turbidity was decreased with increase of enzyme concentration, and the minimum value of turbidity was 0.04 (OD) when 0.08% enzyme was treated at $37.99^{\circ}C$ for 60.90 min. Total sugar was affected by all treatment conditions and the maximum value was 8.37% when 0.03% enzyme was treated at $39.28^{\circ}C$ for 42.04 min. Reducing sugar and soluble solid were largely affected by enzyme concentration, and the maximum value of reducing sugar was 7.22% when 0.02% enzyme was treated at $42.96^{\circ}C$ for 46.21 min. The maximum value of soluble solid was 8.13% when 0.02% enzyme was treated at $46.91^{\circ}C$ for 42.13 min.

Optimization of Ethanol Extraction of $\gamma$-oryzanol and Other Functional Components from Rice Bran (미강의 $\gamma$-oryzanol 및 생리활성물질의 에탄올 추출공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.281-289
    • /
    • 2010
  • We determined the optimum ethanolic conditions for extraction of $\gamma$-oryzanol and other functional components from rice bran, using response surface methodology (RSM). A central composite design was used to investigate the effects of the independent variables of solvent ratio ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$), on dependent variables including yield ($Y_1$), total phenolic content ($Y_2$), electron-donating activity ($Y_3$), ferulic acid level ($Y_4$), and $\gamma$-oryzanol concentration ($Y_5$). Solvent ratio and extraction temperature were the most important factors in extraction. The maximum yield was at 22.56 mL/g ($X_1$), 78.19C ($X_2$), and 522.15 min ($X_3$), at the saddle point. Total phenolic levels were little affected by solvent ratio or extraction temperature. The maximum concentration of extracted total phenolics was 90.78mg GAE/100 g at 21.26 mL/g, $94.65^{\circ}C$, and 567.97 min. A maximum electron-donating ability of 54.72% was obtained with the parameters 20.20 mL/g,$81.89^{\circ}C$, and 701.87 min, at the highest point. The maximum level of ferulic acid components was 210.47 mg/100g at 5.22 mL/g, $79.66^{\circ}C$, and 575.24 min. In addition, the maximum $\gamma$-oryzanol concentration was 660.39 mg/100g at 5.10 mL/g, $81.83^{\circ}C$, and 587.39 min. The optimum extraction conditions were a solvent ratio of 10.45 mL/g, $80^{\circ}C$ extraction temperature, and 535 min extraction time. Predicted extraction levels under optimized conditions were in line with experimental values.

Fermentation Property of Chinese Cabbage Kimchi by Fermentation Temperature and Salt Concentration (발효온도 및 소금농도에 따른 배추김치의 발효 특성)

  • Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2000
  • The effects of fermentation temperature$(0{\sim}l5^{\circ}C)$ and salt concentration$(1.5{\sim}4.0%)$ on the fermentation property of Chinese cabbage Kimchi were analyzed by response surface methodology. The pH decreased and acidity increased with increasing fermentation time. The reduction and increment velocities of pH and acidity were increased by increasing fermentation temperature and decreasing salt concentration. The optimum pH 4.2 was reached within $14{\sim}24$ days at $5{\sim}15^{\circ}C$, while pHs of 24 days at $0{\sim}5^{\circ}C$ were still lower value than 4.2. The effect of salt concentration more affected terminal fermentation period than initial fermentation period. The maximum edible acidity, 0.75%, was reached within 8 days at $15^{\circ}C$, while acidifies of 24 days at $0^{\circ}C$ were $0.35{\sim}0.43%$. The effects of salt concentration at $0^{\circ}C$ was higher than those at $15^{\circ}C$. The fermentation time, fermentation temperature and salt concentration were the first, second and third affecting factors on the pH and acidity of Kimchi. Based on the coefficients of determination, pH and acidity were highly fitted to the experimental data$(r^2>0.9276)$. For the suitable acidity range, $0.40{\sim}0.75%$, the edible period of Kimchi at $15^{\circ}C,\;10^{\circ}C\;and\;5^{\circ}C$ were 4 days, 10 days and 18 days at the 2.75% of salt concentration, respectively. The edible period increased from 14 days to 19 days with increased salt concentration from 1.50% to 4.00% at $5^{\circ}C$ of fermentation temperature.

  • PDF