• Title/Summary/Keyword: Response Function

Search Result 4,813, Processing Time 0.033 seconds

The ionization chamber response function from the measured and the corrected by Monte Carlo simulation. (측정된 원통형 전리함 반응함수의 몬테카를로 시뮬레이션 보정)

  • 이병용;김미화;조병철;나상균;김종훈;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • The response function of ionization chambers are measured in the narrow radiation field Nominal photon energies are 4MV, 6MV and 15MV. the Radii of the chambers are 0.5cm~3.05cm and the field size is 0.2$\times$20$\textrm{cm}^2$. The measurements are taken in the water phantom at 10cm depth. The beam kernel (radiation distribution profile) for narrow radiation field in the phantom are obtained from Monte Carlo simulation (EGS4, Electron Gamma Shower 4). The beam kernel components in the measured chamber response function are deconvolved in order to get the ideal chamber response function of the $\delta$-shaped function radiation field. The chamber response functions have energy dependent tendency before deconvolution, while they show energy invariant properties, after the components of beam kernels are removed by deconvolution method.

  • PDF

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

Onset condition of the combustion-driven sound in a surface burner (표면 연소기의 연소진동음의 발생조건)

  • Kwon, Y.P.;Lee, J.W.;Lee, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.

Behavioral Response and Immune Alterations by Electric Footshock in Mice (생쥐에서 전기자극 스트레스에 의한 행동반응과 면역 기능 변화)

  • Kim, Jung-Bum;Park, Won-Kyun;Song, Dae-Kyu
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.4 no.1
    • /
    • pp.44-53
    • /
    • 1996
  • The present experiment was designed to investigate the effects of behavioral, response to immune function in response to electric footshock in mice. Mice were subjected to electric footshock for 3 days(two sessions a day, 11 times of shock for about 31 minutes a session). The humoral immune response was measured using mice immunized with rat RBC. The cell-mediated immune responses were evaluated by contact hypersensitivity to 2, 4-dinitrofluorobenzene(DNFB) and by phytohemagglutin(PHA)-stimulated splenocytes proliferation assay. In stressed group, electric footshock suppressed significantly anti-rat RBC antibody production(p<0.05), but enhanced significantly $T_{48}$ relative to $T_{24}$ in contact hypersenstivry (P<.01) and T-cell proliferation response(P<.05) by PHA stimulation elative to control group. T-cell proliferation response by PHA stimulation was significantly correlated to the movement than the sensitivity and coping behavior in the mouse, in response to the electric footshock. These data supper the importance of behavioral response in stress-induced changes of immune functions.

  • PDF

Hydrologic Response Analysis Considering the Scale Problem : Part 1. Derivation of the Model (규모문제를 고려한 수문응답의 해석 : 1. 모형이론의 유도)

  • 성기원;선우중호
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.185-194
    • /
    • 1995
  • The objective of this study is to explore scale problem and to analyze the relations between scale and geomorphologic parameters of the rainfall-runoff model. Generally, measurement and calculation of geomorphologic parameters rely on and are sensitive to the resolution of source information available. Therefore, rainfall-runoff models using geomorphologic parameters should take account of the effects of the map scale used in their development. The derived rainfall-runoff model considering scale problem in this research is the GIUH type model, that is a basin IUH consisting of the channel network response and hillslope response. The cannel network response is computed by means of the diffusion analogy transformed from linearized St. Venant equation and hillslope response is calculated by 2-parameter gamma distribution function. Representing geomorphologic structure of the channel network and initial distribution of its response is width function. This width function is derived by fractal theory and Melton's law to consider scale problems and is weighted by the source location function (SLF) proposed in this research to increase the applicability.

  • PDF

Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

  • Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Hyungsoo Lim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.221-227
    • /
    • 2023
  • A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equation of motion for the rotordynamic system can be represented using complex coordinates. The directional frequency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most previous studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both positive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the unisotropic rotor.

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF