• Title/Summary/Keyword: Response Evaluation

Search Result 3,785, Processing Time 0.032 seconds

A study on the improvement plan of fire simulation training for the improvement of fire response ability : Focusing on the fire simulation training of business facility (화재대응능력 향상을 위한 화재모의훈련의 개선방안에 관한 연구 : 업무시설의 화재모의훈련 중심으로)

  • Kim, Bongjun;Ryu, Guhwan
    • Journal of Digital Convergence
    • /
    • v.18 no.9
    • /
    • pp.191-198
    • /
    • 2020
  • In this study, in order to propose an improvement plan for fire simulation training to improve fire response capability, fire simulation training is conducted for three business facilities, and changes according to whether training materials are used and whether the response time for each response stage is reflected in the training evaluation. The response posture and response ability of the training participants were observed and analyzed. As a result of the analysis, it was analyzed that most of the training participants improved their participation in training, response posture, and response ability when the use of training textbooks and response time for each response stage were reflected in the training evaluation. In the event of a fire simulation training, a number of training materials that can similarly implement the fire situation are used to improve and maintain the fire response capabilities (fire notification and fire report, initial extinguishing, and evacuation) of the training participants, and the target time for each response step. The result was that it can be used as a useful index for improving fire response capability and improving fire simulation training in the future and feedback only when quantitative training evaluation is conducted based on this setting.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy

  • Choi, Youngmin;Kim, Sungmin;Kwak, Dong-Won;Lee, Hyung-Sik;Kang, Myung-Koo;Lee, Dong-Kun;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: To explore the feasibility of maximum diameter as a response assessment method for vestibular schwannomas (VS) after stereotactic radiosurgery or fractionated stereotactic radiotherapy (RT), we analyzed the concordance of RT responses between maximum diameters and volumetric measurements. Materials and Methods: Forty-two patients receiving curative stereotactic radiosurgery or fractionated stereotactic RT for VS were analyzed retrospectively. Twelve patients were excluded: 4 did not receive follow-up magnetic resonance imaging (MRI) scans and 8 had initial MRI scans with a slice thickness >3 mm. The maximum diameter, tumor volume (TV), and enhanced tumor volume (ETV) were measured in each MRI study. The percent change after RT was evaluated according to the measurement methods and their concordances were calculated with the Pearson correlation. The response classifications were determined by the assessment modalities, and their agreement was analyzed with Cohen kappa statistics. Results: Median follow-up was 31.0 months (range, 3.5 to 86.5 months), and 90 follow-up MRI studies were analyzed. The percent change of maximum diameter correlated strongly with TV and ETV (r(p) = 0.85, 0.63, p = 0.000, respectively). Concordance of responses between the Response Evaluation Criteria in Solid Tumors (RECIST) using the maximum diameters and either TV or ETV were moderate (kappa = 0.58; 95% confidence interval, 0.32-0.85) or fair (kappa = 0.32; 95% confidence interval, 0.05-0.59), respectively. Conclusions: The percent changes in maximum diameter and the responses in RECIST were significantly concordant with those in the volumetric measurements. Therefore, the maximum diameters can be used for the response evaluation of VS following stereotactic RT.

Evaluating Impressions of Robots According to the Robot's Embodiment Level and Response Speed (로봇의 외형 구체화 정도 및 반응속도에 따른 로봇 인상 평가)

  • Kang, Dahyun;Kwak, Sonya S.
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.153-167
    • /
    • 2017
  • Nowadays, as many robots are developed for desktop, users interact with the robots based on speech. However, due to technical limitations related to speech-based interaction, an alternative is needed. We designed this research to design a robot that interacts with the user by using unconditional reflection of biological signals. In order to apply bio-signals to robots more effectively, we evaluated the robots' overall service evaluation, perceived intelligence, appropriateness, trustworthy, and sociability according to the degree of the robot's embodiment level and the response speed of the robot. The result showed that in terms of intelligence and appropriateness, 3D robot with higher embodiment level was more positively evaluated than 2D robot with lower embodiment level. Also, the robot with faster response rate was evaluated more favorably in overall service evaluation, intelligence, appropriateness, trustworthy, and sociability than the robot with slower response rate. In addition, in service evaluation, trustworthy, and sociability, there were interaction effects according to the robot's embodiment level and the response speed.

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

Evaluation of Stress Response and Recovery using Biosignals and Fuzzy Theory (생체신호와 퍼지이론을 이용한 스트레스에 대한 반응과 회복의 평가)

  • Seol, A-Ram;Sin, Jae-U;Seong, Hong-Mo;Lee, Cheol-Gyu;Yun, Yeong-Ro
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.59-70
    • /
    • 2002
  • This paper is about the evaluation of stress response and recovery using biosignals and fuzzy theory. We caused mental stress by means of a coin-stacking task. During the experiment, 4 kinds of biosignals, including frontalis EMG, ECG, peripheral skin temperature and skin conductance level, were acquired. Then, the degree of stress was assessed by synthetically those signals using fuzzy inference. From the fuzzy inference result, the parameters (amount of physiological change / amount of imposed stress) and (time to 25% recovery), which represent response and recovery respectively, were derived. We made a two-dimensional point graph using the response parameter as an abscissa and the recovery parameter as an ordinate for each subject.

Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment

  • Tributsch, Alexander;Adam, Christoph
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2012
  • This paper aims at assessing the seismic performance of Tuned Mass Dampers (TMDs) based on sets of recorded ground motions. For the simplest configuration of a structure-TMD assembly, in a comprehensive study characteristic response quantities are derived and statistically evaluated. Optimal tuning of TMD parameters is discussed and evaluated. The response reduction by application of a TMD is quantified depending on the structural period, inherent damping of the stand-alone structure, and ratio of TMD mass to structural mass. The effect of detuning on the stroke of the TMD and on the structural response is assessed and quantified. It is verified that a TMD damping coefficient larger than the optimal one reduces the peak deflection of the TMD spring significantly, whereas the response reduction of the main structure remains almost unaffected. Analytical relations for quantifying the effect of a TMD are derived and subsequently evaluated. These relations allow the engineer in practice a fast and yet accurate assessment of the TMD performance.

A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - II Seismic Response (응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - II 지진 응답)

  • Ha, Seong Jin;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • This study is the sequel of a companion paper (I. Algorithm) for assessment of the seismic performance evaluation of structure using ground motions selected by the proposed algorithm. To evaluate the effect of the correlation structures of selected ground motions on the seismic responses of a structure, three sets of ground motions are selected with and without consideration of the correlation structure. Nonlinear response history analyses of a 20-story reinforced concrete frame are conducted using the three sets of ground motions. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.

Evaluation of Seismic Response of Multi-Degree of Freedom Bridge Structures According to The ESDOF Method (등가단자유도 방법에 따른 다자유도 교량의 지진응답평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.23-30
    • /
    • 2005
  • The capacity spectrum method(CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom(MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures should be calculated. To calculate the equivalent response of MDOF system, equivalent responses are obtained by using Song method, Fajfar method and Calvi method. Also, those responses are applied to CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated straightforwardly.

  • PDF

Implementation of Framework for Efficient and Scalable Disaster Response Services

  • Seokjin Im
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.290-295
    • /
    • 2023
  • The global warming by greenhouse gases causes climate change and disasters such as earthquakes and tsunamis frequently, leading to great damage. It is important to build efficient and scalable disaster response services to minimize the damage. Existing disaster warning service by the mobile text is limited by the scalability and the data size to be delivered. In this paper, we propose a framework for disaster response services that is efficient and flexible by allowing to adopt various indexing schemes and scalable by supporting any number of clients in disaster situations anytime and anywhere. Also, the framework by wireless data broadcast can be free from the limitation of the size of data to be delivered. We design and implement the proposed framework and evaluate the framework. For the evaluation, we simulate the implemented framework by adopting various indexing schemes like HCI, DSI and TTSI, and by comparing the access times of the clients. Through the evaluation, we show that the proposed framework can provide efficient and scalable and flexible disaster response services.