• 제목/요약/키워드: Response Displacement Method

검색결과 747건 처리시간 0.032초

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 김성완;장성진;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 장성진;김남식
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.507-515
    • /
    • 2008
  • 본 연구에서는 모드분해기법을 이용한 변형률신호로부터 변위응답추정 방법을 개발하였다. 일반적으로 교량의 안정성평가는 완공 후에 초점이 맞추어져 있다. 하지만 가설 중에도 풍하중과 지진하중과 같은 동적하중에 노출되어 있으며, 이런 동적하중에 대한 안정성을 검토하기 위해 교량의 안정성 평가에 있어 중요한 인자인 변위를 추정하는 것이 중요하다. 그러나 건설현장에서의 적절한 변위측정 방법의 부재로 인하여 대형구조물의 전체적인 변위를 측정할 수 없는 것이 현실이다. 본 연구에서는 간접적으로 변위를 추정하는 방법인 변형률로 변위를 추정하는 방법을 제시하였으며, 광섬유 브래그 격자 센서(fiber optic Bragg-grating sensor)를 사용하여 변형률을 계측하였다. 기존에도 FBG센서를 이용한 변위추정 방법이 있었으며 기존의 방법으로는 정적하중에 대한 변위추정은 가능하였으나 고차 모드의 변형률신호와 노이즈의 영향 때문에 동적하중에 대한 변위추정은 많은 오차가 발생하여 정확한 변위추정이 어려웠다. 이런 오차를 줄이는 방법으로 모드분해기법을 사용하였다. 모드분해기법은 변형률신호로부터 proper orthogonal decomposition(POD)을 이용하여 추정한 모드형상과 empirical mode decomposition(EMD)을 이용하여 모드 분해한 변형률신호로 모드별 변위응답을 추정하고, 구조물의 주요 모드에 대한 변위응답을 합하여 전체변위응답을 추정하는 방법이다. 제안한 모드분해기법을 검증하기 위해 실내모형실험을 수행하였다.

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun;Jeonghwa Lee;Keesei Lee;Young-Jong Kang
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.235-251
    • /
    • 2023
  • A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method

  • Guixiao Xu;F. Ming
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.349-359
    • /
    • 2023
  • Dynamic response and economic of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

응답변위법을 적용한 수직구의 내진설계 (Seismic Design of Vertical Shaft using Response Displacement Method)

  • 김용민;정상섬;이용희;장정범
    • 대한토목학회논문집
    • /
    • 제30권6C호
    • /
    • pp.241-253
    • /
    • 2010
  • 본 연구에서는 응답변위법을 수직구 내진설계에 적용하고 구조물의 응답을 정확하게 구할 수 있는 방법을 제시하고자 기반면, 지반의 상대변위 산정 방법, 하중 산정 및 적용 방법에 따른 3차원 유한요소해석을 수행하였다. 그 결과, 수직구 내진설계를 위한 기반면은 전단파속도가 1500m/s를 초과하는 지반을 선정하는 것이 가장 적합하며, 지반변위 산정 방법은 다층지반의 특성을 반영할 수 있는 double cosine이 가장 적합하다. 또한 응답변위법 해석을 위한 동토압 및 주면전단력 산정 시 구조물의 단면형상효과를 고려하는 것이 실제 수직구의 동적거동을 적절히 반영하며 경제적인 설계를 할 수 있음을 알 수 있었다.

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.