• Title/Summary/Keyword: Respiratory electron transport system

Search Result 5, Processing Time 0.014 seconds

Postchilling Accumulation of Superoxide in Cells and Chilling Injury in Rice Plant (Superoxide의 세포내 축적과 벼냉해의 발현)

  • Kim, Jong-Pyung;Hyun, Il;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.364-370
    • /
    • 1987
  • The $O_2^-$ level of the extract from young rice leaves, which was cold treated for 2 days and then placed at room temperature for a period of time significantly higher than that from tissues untreated. $O_2^-$ level in leaves was practically unchanged during cold treatment for 48 hours. But it started to increase to arrive at maximum in 8 hours, once the plants were placed under room temperature. The abnormal production of $O_2^-$ in mitochondria during postchilling process was interpreted as a biochemical consequence of accumulation of glycolysis product(s) in cytosol and/or NADH in mitochondrial matrix due to disruption of catabolic balance at low temperature. Mitochondria isolated from the chilling injured tissue was found to have lost considerably their respiratory activity. This fact may imply the involvement of intramitochondrial accumulation of $O_2^-$ in the inactivation of electron transport chain system. The observation that mitochondria in the presence of the $O_2^--producing$ enzymatic system (Xanthine/Xanthine oxidase) lost their respiratory activity supports this inference. It was also found in this work that Superoxide dismutase (SOD) is a substrate inducible enzyme, and that SOD is a possible protective agent in plant cell against chilling injury.

  • PDF

$Na^+$ Requirement of NADH dehydrogenase from an Extreme halophile, Halobacterium sp. EH10 Isolated from a Saltern in Korea (Halobacterium sp. EH10 NADH dehydrogenase의 $Na^+$ 요구성)

  • Bae, Moo;Lee, Jeong-Im
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 1991
  • Intracellular enzymes of an extreme halophilic bacterium, Halobacterium sp. HE10, isolated from a saltern in Korea was investigated. The membrane-bound enzyme, NADH dehydrogenase, involved in electron transport system was stimulated by the addition of 2.0 M NaCl. The respiratory enzyme activities such as NADH oxidase and NADH dehydrogenase was decreased on removal of $Na^+$ ion and restored when replaced with cations like $K^+$, $Li^+$and $NH_{4}^{+}$ ions. Furthermore, their activities were affected by the anions such like carbonate, acetate, sulfate, chloride and nitrate at the presence of $Na^+$ion. Lactate dehydrogenase activity was highest at the asturated solution of NaCl and isocitrate dehydrogenase activity was a maximum level at 1.0 M NaCl. These results suggested that the enzyme activites of the respiratory chain in Halobacterium sp. EH10 was stimulated by the presence of $Na^+$ ion.

  • PDF

Biological activity of quinoline derivatives as inhibitors of NADH-ubiquinone oxidoreductase in the respiratory chain (NADH-ubiquinone oxidoreductase 저해제인 quinoline 유도체들의 생리활성)

  • Chung, Kun-Hoe;Cho, Kwang-Yun;Takahashi, Nobutaka;Yoshida, Shigeo
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 1991
  • New quinoline compounds were designed, synthesized, and examined with submitochondria. Most compounds showed high activity against NADH-ubiquinone oxidoreductase. Inhibition activity was mainly affected by the length of the lipophilic part, regardless of bulkiness or location of a phenyl group in the side chain. The $\beta-methyl$ group was demons)rated to be the optimal functionality on the nuclei of the quinoline derivatives so 4hat either deletion or insertion of a methylene on the group eliminated its activity.

  • PDF

Distribution of Ubiquinone System in Fungi (진균류의 Ubiquinone system의 분포에 관한 연구)

  • Park, Ju-Young;Chung, Ji-Won;Shin, Yong-Kook;Jo, Wol-Soon;Seo, Pil-Soo;Park, Yong-Ha;Lee, Jae-Dong
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 1998
  • Isoprenoid quinone are essential compositions of the respiratory or photosynthetic electron transport system of microorganisms. Their chemotaxonomic significance as well as their physiological importance has been fully realized. We determined the ubiquinone types of the genus Trichoderma, Gliocladium, Verticillium, Aspergillus, and several mushroom such as Agaricus bisporus. Lentinus edodes, Pleurotus ostreatus, Flammulina velutips, Phellinus chrysoloma, Phellinus igniarius and Phellinus laevigatus. Most of Deuteromycotina had Q-10($H_2$), and all of mushroom had Q-9 as main ubiquinone type. Ubiquinone type in other fungal taxa.

  • PDF

Changes of Bacterial Population during the Decomposition Process of Red Tide Dinoflagellate, Cochiodinium polykrikoides in the Marine Sediment Addition of Yellow Loess (황토첨가 해양퇴적물에서 적조생물 Cochiodinium polykrikoides 분해중 세균군집의 변동)

  • PARK Young-Tae;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.920-926
    • /
    • 1998
  • To investigate the effects of yellow loess on the microbial community after applying into C. polykrikoides as a red tide centrol method during decomposition process, we conducted this study using microcosm experiments, which consisted of sediment collected from Jinhae and Masan bay. The composition, number of bacteria and respiratory electron transport system activity (ETSA) were analyzed. The number of heterotrophic bacteria examined in the samples of both stations reached maximum value within 12 hrs with $10^7$ cells/dry g, independent with the yellow loess applied. In addition, a differenee in the variation of heterotrophic bacterial composition was not observed by adding the yellow loess, and Vibrio spp. always appeared during the culture periods, However, in day 8 culture, the sulfate reducing bacteria was $3.8\times10^7$ cells/dry g in Masan bay and $5.5\times10^6$ cells/dry g in Jinhae bay samples without yellow loess, and these were 120, 350 fold-and 160, 420 fold-increased when yellow loess was added (1 : 1, 1 : 2). The average ETSA was 6.8$\~$7.6 $\mu$g formazan $h^{-1}$ dry $g^{-1}$ independently with yellow loess in aerobic condition for both samples, but activity was decreased by addition of yellow loess in anaerobic. Thus the addition of yellow loess to marine sediment seems to have an effect to inhibit the anaerobic decomposition process and growth of sulfate reducing bacteria which lead to the bad condition of marine environments.

  • PDF