본 논문에서 코골이 검출과 호흡 측정이 가능한 수면 관리 베개 시스템에 대해 연구 조사 하였다. 수면 관리 베개 시스템은 4개의 압력센서, 두 개의 마이크로폰, 하나의 베개, 측정 시스템으로 구성되어있다. 베개의 하단부에 설치된 4개의 압력 센서는 호흡 신호를 측정 하는데 사용되고, 베개 중앙 왼쪽과 오른 쪽에 설치된 두 개의 마이크로폰은 코골이 신호만 검출하는데 사용된다. 데이터 수집 장치와 컴퓨터로 구성된 측정 시스템을 사용하여 10명의 젊은 사람들의 코골이 신호와 호흡신호를 측정하였다. 호흡 신호 측정 정확도는 약 98%이였고, 코골이 신호 측정 정확도는 약 97% 이였다. 본 연구에서 수행된 실험 결과들이 수면 관리 베개 시스템이 수면 중 사람의 코골이 신호와 호흡신호를 측정하는데 사용 가능함을 보여 주고 있다.
본 논문에서는 일상생활에 편리한 무구속 센서를 활용하여 호흡을 측정하는 시스템을 제안한다. 제안된 시스템은 Piezoelectric 센서를 내장한 센서 패드, 센서 패드로부터 출력된 호흡 신호를 증폭 필터링한 후 디지털로 변환하는 호흡 측정 기기, 센서 데이터 시각화 및 호흡 측정 알고리즘을 구현한 뷰어로 구성된다. 제안된 알고리즘은 센서 데이터의 임계값을 통해 추출된 최고점을 기준으로 한 호흡 주기에 기반하고 있다. 3명의 피실험자에 대하여 이동 평균 개수와 임계값을 변경해 가면서 호흡 측정 실험이 수행되었으며, 실험 결과에 의하면, 제안 시스템은 이동 평균 개수 50~60을 중심으로 임계값 800~1300 범위에서 약 5% 이내의 오류율이라는 양호한 성능을 나타내었다. 향후 본 시스템은 영 유아나 독거노인의 수면 중 질식사를 예방하는데 기여할 수 있을 것으로 기대된다.
이 논문에서는 여러 곳에서 통용되고 있는 기존의 CW(Continuous-Wave) 바이오 레이더 송수신 모델을 수정한 새로운 송수신 모델을 제안한다. 최근에 심장 박동과 호흡을 검출하기 위해 CW 바이오 레이더를 이용해서 여러 연구 기관에서 연구가 진행되고 있다. 그러나 이 통용되고 있는 수신 모델을 이용해서 심장 박동을 검출하게 되면 여분의 위상 변이나 가우시안 잡음에 취약하고, 또한 인체 공학적으로 개념상 정확하지 못한 단점을 가지고 있다. 그러므로 이 논문에서 인체 공학상으로 정확한 수정된 CW 바이오 레이더 송수신 모델을 제안함으로써 여분의 위상 변이와 가우시안 잡음이 있는 환경뿐 아니라 다중 경로 환경에서 기존의 송수신 모델과의 심장 박동과 호흡 검출에 대한 성능을 비교 분석한다.
This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.
Respiration is the process of moving air into and out of the lung. Respiration changes the temperature in the chamber while exchanging energy. Especially the temperature of the face. Respiration monitoring using an infrared camera measures the temperature change caused by breathing. The conventional method assumes that motion is not considered and measures respiration. These assumptions can not accurately measure the respiration rate when breathing moves. In addition, the respiration rate measurement is performed by counting the number of peaks of the breathing waveform by displaying the position of the peak in a specific window, and there is a disadvantage that the breathing rate can not be measured accurately. In this paper, we use KLT tracking and block matching to calibrate limited weak movements during breathing and extract respiration waveform. In order to increase the accuracy of the respiration rate, the position of the peak used in the breath calculation is calculated by converting from a single point to a high resolution. Through this process, the respiration signal could be extracted even in weak motion, and the respiration rate could be measured robustly even in various time windows.
In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.
영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다.
We have designed the system that measure one channel ECG by two electrode and extract real-time EDR with more related resipiration and comportable to subject by using conductive textile. On the assumption that relation between RL electrode and potential measurement electrode is coupled with RC connected model, we designed RL drive output to feedback two electrode for reduction of common mode signal. The conductive textile which was used for two ECG electrode was offered more comfort during night sleep in bed than any other method using attachments. In the method of single-lead EDR, R wave point or QRS interval area could be used for EDR estimation in traditional method, it is, so to speak, the amplitude modulation(AM) method for EDR. Alternatively, R-R interval could be used for frequency modulation(FM) method based on Respiratory Sinus Arrhythmia(RSA). For evaluation of performance on AM EDR and FM EDR from 14 subject, ECG lead III was measured. Each EDR was compared with both temperature around nose(direct measurement of respiration) and respiration signal from thoracic belt(indirect measurement of respiration) on mean squared error(MSE), cross correlation(Xcorr), and Coherence. The upsampling interpolation technique of multirate signal processing is applied to interpolating data instead of cubic spline interpolation. As a result, we showed the real-time EDR extraction processing to be implemented at micro-controller.
A Doppler radar sensor was applied to detect respirations and heartbeats of persons who were lying on a bed. This study is preliminary study aiming at non-contact and non-intrusive respiration and heart rate monitoring during sleep in daily life. For the experiments, 10GHz Doppler radar with patch-type antenna was used and installed on the upper right and the distance between the body and the antenna was 1 m. The results show that each signal of respiration and heartbeat is observed in each frequency band however the frequency band and the waveform vary according to the subjects and the posture. The results show that the heartbeats can be detected with the peak detection in some frequency band. This study shows the feasibility of applying the Doppler radar to detection of heartbeat and respiration during sleep and further studies about heartbeat detection algorithm are required.
There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.