• Title/Summary/Keyword: Resources Recycle

Search Result 276, Processing Time 0.033 seconds

Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process (휘발산화 공정 조건에 따른 Cs-Te-O 시스템의 산화 환원 거동 연구)

  • Park, Byung Heung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.700-708
    • /
    • 2013
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. Pyroprocessing has been developed with the dry technologies which are performed under high temperature conditions excluding any aqueous processes. Pyro-processes which are based on the electrochemical principles require pretreatment processes and a voloxidation process is considered as a pretreatment step for an electrolytic reduction process. Various kinds of gas conditions are applicable to the voloxidation process and the understanding of Cs behavior during the process is of importance for the analyses of waste characteristics and heat load on the overall pyroprocessing. In this study, the changes of chemical compounds with the gas conditions were calculated by analyzing gas-solid reaction behavior based on the chemical equilibria on a Cs-Te-O system. $Cs_2TeO_3$ and $Cs_2TeO_4$ were selected after a Tpp diagram analysis and it was confirmed that they are relatively stable under oxidizing atmospheres while it was shown that Cs and Te would be removed by volatilization under reducing atmosphere at a high temperature. This work provided basic data for predicting Cs behavior during the voloxidation process at which compounds are chemically distributed as the first stage in the pyroprocessing and it is expected that the results would be used for setting up material balances and related purposes.

A Study on Blood Management System based on SIP for Ubiquitous Healthcare service (유비쿼터스 헬스케어 서비스를 위한 SIP 기반 혈액관리 시스템에 관한 연구)

  • Park, Yong-Min;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1222-1232
    • /
    • 2011
  • RFID/USN core technologies for ubiquitous computing, It is possible to use variety of sensors, direct processors, and wireless network technology that easily collect the actual physical environment and can monitor information remotely. Especially the healthcare industry and services combined with U-Healthcare that have international competitiveness in the medical field. But the USN, standard management system of RFID such as EPCglobal architecture framework, the lack of interoperability issues and the global sensor network implementation. In this paper, a system for managing sensor nodes of the USN, USN of SIP-based management system (UMS) is proposed. UMS support Session Initiation Protocol (SIP), provide session management and mobility capabilities, that is based on Internet standard protocol. UMS architecture of the existing SIP architecture, added USN User Agent (UUA) and the USN Name Server (UNS) that the location of sensor nodes should be possible to trace. UUA on behalf of the limited capacity of the location of the sensor nodes to perform the registration process, UNS to track the location of the sensor nodes to provide name resolution services. The proposed management system has the advantage of internet applications such as Web services interoperability and easy to recycle existing resources with other SIP-based because it uses the Internet standard protocol SIP. In this paper we propose is based on the UMS blood temperature management system is verified through the scenario.

Production of Organic Acids from Food By-Products - Mass Production of Organic Acids by Continuous Flow Ceil Recycling Fermentation - (식품부산물로부터 유기산의 대량생산공정에 관한 연구 - 세포재순환식 연속발효를 이용한 유기산의 대량 생산 -)

  • Ju Yun-Sang;Jin Sun-Ja;Hwang Pil-Gi;Choi Chul-Ho;Lee Eui-Sang
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.484-488
    • /
    • 2004
  • Fermentation studies were conducted in batch and continuous flow cell-recycle reactors with food by-products as substrates. The genus Propionibacterium acidipropionici ATCC 4965 was utilized in the production of organic acids. Good performance was achieved in the batch fermentation using hydrol as a carbon source and corn steep liquor (CSL) as nitrogen and vitamin sources. Product yields and productivity based on maximum values were 0.80 g total acids/g glucose and 0.26 g total acids/L/h, respectively, when $3\%$, (w/v) of hydrol and $2.5\%$, (w/v) of CSL were utilized. Continuous fermentation with cell-recycling system using the optimum amounts of substrates resulted in dramatic increase in cell concentration (X) and maximum productivity (P). Compared to the batch fermentation, X and P were increased by as much as 21 and 13 times, respectively, at the dilution ratio of $0.2\;hr^{-1}$, indicating that cell recycling fermentation of food by-products provides valuable means for the mass production of organic acids as well as utilizing cell mass as good nutrient resources.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.

A Study on the Physical Properties of a Compound Using the Crosslinking of Vinylized-mesoporous Silica and Regenerated Polyethylene (비닐화 실란이 도입된 메조포러스 실리카와 재생 폴리에틸렌의 가교결합을 이용한 컴파운드의 물성 연구)

  • Tae-Yoon Kim;Hyun-Ho Park;Chang-Seop Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.420-428
    • /
    • 2023
  • Crosslinking was introduced into vinylized-mesoporous silica and recycled polyethylene. By introducing a vinyl group into the mesoporous silica, it becomes a material capable of inducing cross-linking with non-polar polyethylene. By synthesizing vinylized-mesoporous silica and inducing crosslinking with recycled polyethylene, a recycled polyethylene composite with improved physical properties than existing recycled polyethylene was synthesized. In addition, even when a small amount is added according to the grade of recycled polyethylene using vinylized-mesoporous silica, the crosslinking reaction proceeds and all physical properties are improved. Four types of vinylized-mesoporous silica were synthesized, and the shape, microstructure, and functional groups were analyzed by TEM, BET, FT-IR, and XRD. Using vinylized-mesoporous silica, three types of compounds were blended by crosslinking reaction with recycled polyethylene. In order to confirm the presence or absence of crosslinking, analysis was performed using XPS and FT-IR, and physical properties such as tensile strength, elongation, flexural strength, and flexural modulus were confirmed using a universal testing machine. As a result, by applying vinylized-mesoporous silica to recycled polyethylene in various grades, the weak physical properties of existing recycled polyethylene were overcome. By applying the vinylized-mesoporous silica, recycled polyethylene composite material that overcomes the weak physical properties to the normal polyethylene, it shows the optimal physical property index that can be used commercially. Therefore, it is expected that it can potentially increase the use of recycled polyethylene and recycle resources.

Analysis of the Effects of Recycling and Reuse of Used Electric Vehicle Batteries in Korea (한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구)

  • Yujeong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • According to the IEA (2022), global rechargeable battery demand is expected to reach 1.3 TWh in 2040. EV batteries will account for about 80% of this demand, and used EV batteries are expected to be discharged after 30 years. Used EV batteries can be recycled and reused to create new value. They can also resolve one of the most vulnerable parts of the battery supply chain: raw material insecurity. In this study, we analyzed the amount of used batteries generated by EV in Korea and their potential for reuse and recycling. As a result, it was estimated that the annual generation of used batteries for EV began to increase to more than 100,000 in '31 and expanded to 810,000 in '45. In addition, it was found that the market for recycling EV batteries in '45 could be expected to be equivalent to the production of 1 million batteries, and the market for reuse could be expected to be equivalent to the production of 36 Gwh of batteries. On the other hand, according to the plan standard disclosed by the recycling company, domestic used EV batteries can account for 11% of the domestic recycling processing capacity (pre-treatment) ('30). So it will be important to manage the import and export of used batteries in terms of securing raw materials.

Evaluation of Feed Value for Cow Manure-Sawdust Mixtures Fermented by a Fungal Mycelium of Formitella flaxinea (Formitella flaxinea에 의하여 발효된 우분-톱밥 배양물의 사료가치 평가)

  • Kim, Yong-Kook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 2006
  • Fresh dairy cow manure was mixed with dried sawdust at the following moisture contents and manure: sawdust ratios: 50% and 57:43 ($\underline{M50}$), 55% and 64:36 ($\underline{M55}$), 60% and 70:30 ($\underline{M60}$), 65% and 76:24 ($\underline{M65}$), 70% and 83:17 ($\underline{M70}$) 75% and 90:10($\underline{M75}$) and 80% and 96:04($\underline{M80}$). The mixtures were fermented by a fungal mycelium of Fomitella flaxinea for 2wk at 29 C to recycle cow manure along with sawdust and fungal mycelium as a ruminant feedstuff. Chemical composition and in vitro rumen dry matter digestibilities of fermented mixtures were compared with unfermented mixture. The crude protein contents of mixtures were not changed by fermentation with fungal mycelium. Neutral detergent fiber contents of 4WK fermented mixtures (90.6, 85.3, 80.4, and 76.4% for $\underline{M50}$, $\underline{M60}$, $\underline{M70}$ and $\underline{M80}$, respectively were lower (P<0.05) than those of unfermented mixtures (91.1, 89.9, 84.3, and 79.4%). However, acid detergent fiber contents of fermented mixtures (73.8, 68.9, 65.3, and 58.0%) were higher (P<0.05) than those unfermented mixtures (70.2, 67.8, 61.7, and 56.3%). In vitro rumen dry matter digestibilities of fermented mixtures for four weeks(49.4, 36.8, 28.6, and 22.3% for $\underline{M50}$, $\underline{M60}$, $\underline{M70}$ and $\underline{M80}$) were higher than those of unfermented mixtures(34.1, 27.5, 20.6, and 15.4%) (P<0.05).

  • PDF

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF