• Title/Summary/Keyword: Resource Recovery and Recycling

Search Result 97, Processing Time 0.026 seconds

Feasibility of Recycling Residual Solid from Hydrothermal Treatment of Excess Sludge

  • Kim, Kyoung-Rean;Fujie, Koichi;Fujisawa, Toshiharu
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.112-118
    • /
    • 2008
  • Residual solid in excess sludge treated by hydrothermal reaction was investigated as raw material for its recycling. Treated excess sludge and residual solid were also focused on their content change during hydrothermal reaction. Two kinds of excess sludge, obtained from a local food factory and a municipal wastewater treatment process, were tested under various conditions. Following hydrothermal reaction, depending on the reaction conditions, biodegradable substrates in treated excess sludge appeared to increase. The separated residual solid was a composite composed of organic and inorganic materials. The proportion of carbon varied from 34.0 to 41.6% depending on reaction conditions. Although 1.89% of hazardous materials were detected, SiO2 (Quartz) was a predominant constituent of the residual solid. X-ray diffraction (XRD) experiments revealed that the residual solid was of a partially amorphous state, suggesting that the residual solids could be easily converted to stable and non harmful substances through a stabilization process. Thus, this technology could be successfully used to control excess sludge and its reuse.

Froth Flotation of Copper Ore from Jambi Deposit, Indonesia (인도네시아 잠비산 동광석의 부유선별 특성 연구)

  • Kim, Hak-Soon;Jeon, Ho-Seok;Kim, Byoung-Gon;Baek, Sang-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Froth flotation of complex copper ore from Indonesia Jambi mine has been carried out to produce high-grade Cu concentrate. Since the ore contained minor Cu sulfides in addition to major Cu carbonate (malachite), copper concentrate was recovered by two-stage process of flotation, which consisted of copper sulfide flotation using xanthate followed by copper oxide flotation using oleic acid. The copper sulfide concentrate of 57.5% Cu grade with 9.5% recovery was obtained by copper sulfide flotation under conditions of 300 g/t collector (1 : 1 mixture of xanthate series Aero Promoter 211 and Aero Promoter 242) and pH 6.0 pulp. In subsequent copper oxide flotation on sink products, the concentrate of 30.8% Cu grade with 92.1% recovery was obtained under the conditions of oleic acid 300 g/t, AF65 50 g/t, pH 8.0 and 2 times cleaning. The flotation techniques which can achieve a Cu grade of 36.1% and a recovery of 92.1% have been developed from the two-stage process of flotation.

A study on the operation conditon of Effective Energy Recovery and Greenhouse gas Reduction by the facility using Waste / Biomass fuel (폐기물 및 바이오매스 연료 사용시설의 효율적 에너지회수 및 온실가스 감축을 위한 운전조건에 관한 연구)

  • Joo, Won Hyeog;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • The economic issue of the period of return versus investment has emerged to efficiently utilize the thermal energy of public resource recovery facilities using waste and private thermal source facilities using BIO-SRF. Accordingly, the optimum temperature and pressure facilities are required beyond the traditional designed, constructed and operated. In this study, we analyzed current energy output by different heat and pressure model in domestic facilities, and calculated the characteristics of green-house gas emission. In order to, utilize the thermal energy producing facilities using waste and biomass fuel more efficiently, it is temperature and pressure, which will lead to more lucrative investment and return as well.

Analysis on Calcination of Cementitious Powder of Waste Concrete for Raw Cement

  • Park, Dong-Cheon;Kwon, Eun-Hee;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • The purpose of this study is to examine whether cementitious powder separated from waste concrete can be used as an alternative raw material to limestone and reduce the usage of natural resource (limestone) and $CO_2$ emission based on recycling cementitious powder from waste concrete. Experiments actually analyzed the chemical composition of cementitious powder and performed hyperthermia analysis, measurement of free CaO and XRD analysis to measure the degree of recovery of hydration in the model of cementitious powder manufactured based on chemical composition. These were performed in each cementitious powder model at different calcination temperatures such as $900^{\circ}C$, $1200^{\circ}C$, $1300^{\circ}C$, $1400^{\circ}C$ and $1450^{\circ}C$. Through the experiments, it was found that the recovery of hydration was at a level which can be used as the alternative raw material for limestone, but the replacement ratio was directly affected by the degree of mixing of fine aggregate in less than $150{\mu}m$, which cannot be separated from cementitious powder. It was shown that there was no difference in the production of compounds involved in hydration at calcination temperatures of $1200^{\circ}C$ or higher. Therefore, to pursue the replacement of limestone and reduction of greenhouse gas by recycling cementitious powder, the development of technology to efficiently separate aggregate fine powder is required.

Development of New Techniques of Electrostatic Separation for Using of Clean Coal (청정석탄(淸淨石炭) 이용(利用)을 위한 정전선별(靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.54-61
    • /
    • 2005
  • In 2006, the coal usage that is used as energy source of power plant will meet 16,000 MW which is 30% of the whole energy usage. A Coal deposits among the fossil fuels is very plentiful in natural resources and has high economical efficiency but application technique is very inconvenient. Also when burned for utilization, it generate various toxic and untoxic air pollution materials; fly ash, bottom ash, sulfurous acid gas etc. In this study, we could establish a preparation of clean coal by triboelectrostatic separation. In this study, we made a bench-scale's triboelectrostatic separation equipment using electrostatic technology, and got an optimum conditions of various factors for increasing recovery rate and purification in separation. A test result, we got a clean coal that recovery rate is 68.10%, rejection rate of ash and sulfur content is 31.23% and 28.33%.

Concentration and separation of nickel from copper alloy dross using chelating regin (킬레이트 수지를 이용한 구리 합금 부산물에서의 니켈의 농축 및 분리)

  • Lee, Jung-Il;Kong, Man-Sik;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • Separation/recovery of valuable metals such as nickel or tin from copper based alloys has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of nickel from copper based alloy dross using selective adsorption by chelate resin was performed. The chelate resin used in this study has absorbed copper ions more easily than nickel ions in the metal solution, which could allow the concentration/separation of the nickel from the copper base alloy solution. The final molar ratios of Ni and Cu ions in the two concentrated solutions were 70 and 99 % respectively after three-time flowing the solution through the chelate resin column.

A simple route for synthesis of SnO2 from copper alloy dross

  • Lee, Jung-Il;Lee, Bo Seul;Lee, Ji Young;Shin, Ji Young;Kim, Tae Wan;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.84-87
    • /
    • 2014
  • Separation/recovery of valuable metals such as zinc, nickel or tin from copper alloy dross has recently attracted from the viewpoints of environmental protection and resource recycling. In this study, preliminary investigation on separation of tin (Sn) from copper alloy dross using selective dissolution method was performed. The tin in the copper alloy dross did not dissolve in an aqueous nitric acid solution which could allow the concentration/separation of tin from the copper alloy dross. Precipitation of tin as $H_2SnO_3$ (meta stannic acid)occurred in the solution and transformed to tin dioxide ($SnO_2$) after drying process. The dried sample was heat-treated at low temperature and its crystal structure, surface morphology and chemical composition were investigated.

Recovery of Sn from Copper Alloy Dross by a Selective Dissolution and Its Heat-treatment for the Synthesis of SnO2 (선택적 용해에 의한 동합금 부산물에서의 Sn 회수 및 열처리에 의한 SnO2 합성)

  • Ryu, Jeong Ho;Kong, Man-Sik;Lee, Jung-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.173-177
    • /
    • 2013
  • Separation and recovery of valuable metals such as zinc, nickel or tin from copper alloy dross has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of tin from copper alloy dross using selective dissolution method was performed. The tin in the copper alloy dross did not dissolve in the nitric acid solution which could allow the concentration and separation of the tin from the copper alloy dross. Precipitation of tin as $H_2SnO_3$ (metastannic acid) occurred in the solution and transformed to tin dioxide ($SnO_2$) after drying process. The dried sample was heat-treated at low temperature and its phase characteristics, surface morphology and chemical composition were investigated.

Removal and Recovery of Arsenic from Gold Concentrate (금(金) 정광(精鑛)내의 비소(砒素)(As) 제거(除去) 및 회수(回收)에 관한 연구(硏究))

  • Yoo, Kyoungkeun;Shin, Shun-Myung;Park, Jay Hyun;Choi, Ui Kyu;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.33-37
    • /
    • 2013
  • A study on the removal of arsenic from gold concentrate was conducted using thermal decomposition method at $700^{\circ}C$ as a function of reaction time. In addition, the arsenic removed from the concentrate was also collected in the bag-filter as a form of AsS. The content of arsenic in the concentrate was dramatically decreased from 12.62 wt/% to 1.40 wt.% for 1 hour and even lower than 1 wt.% after two hours. The removal efficiency of arsenic was finally achieved to be about 95% after 2 hours at a given temperature.

Application of AIM(Asia-Pacific Integrated Model)/Material to Korea : A Study on Effects of CO2 Emission Reduction (우리나라의 폐기물처리 통합분석모형 개발과 이산화탄소 배출저감 연구)

  • Jo, Sunghan
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.419-445
    • /
    • 2005
  • In 2002, the waste was generated about 277,533tons per day. The treatments of waste were recycling, which had accounted for almost 70%, landfill, which had accounted for 19.8%, and incineration, which had accounted for 6.5%. The energy recovery from incineration has been increased since 1995. The portion of waste in the renewable energy has been increased. Waste incineration heating system generates total 134TOE of $CO_2$ as compared to 6,800TOE of GHG from LNG boiler centralized heating system to bring 98% reduction rate of GHG emissions. We need the integrated model to examine the impacts of waste managements on economy and environments. The Asia-Pacific Integrated Model is introduced as the example of the integrated model.

  • PDF