• Title/Summary/Keyword: Resource Prediction

Search Result 367, Processing Time 0.028 seconds

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Assessment of the long-term hydrologic impacts on the ungaged Tumen River basin by using satellite and global LSM based on data and SWAT model (위성 및 광역지표모형 기반 자료와 SWAT 모형을 이용한 미계측 두만강 유역의 장기 수문영향 평가)

  • Cho, Younghyun;Ahn, Yoon Ho;Park, Sang Young;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.94-94
    • /
    • 2020
  • 최근 정부의 신북방정책 추진에 따라 수자원분야에서는 동북아지역 국제 공유하천을 중심의 물 정보 및 연구협력 기회 확보와 지정학적 특성을 고려한 지역 현안해결 중심의 연구가 재조명 되고 있다. 두만강은 이러한 동북아의 중심에 위치하고 있으며, 중국, 북한, 러이사의 국경을 따라 흐르며 지역 수자원의 대부분을 공급하는 국제하천이다. 또한, 지난 2018년 5월에는 하구유역이 람사르(Ramsar) 습지로 승인됨에 따라 철새 등을 포함한 생태가치의 중요성도 크게 증가하였다. 하지만 이 지역은 유역의 지정학적 민감성과 접근이 제한된 관측 정보들로 인해 그 수자원·환경 효용성을 정확하게 파악할 수 없을 뿐만 아니라, 최근 기후변화에 따른 영향으로 홍수, 가뭄 등의 수재해와 수질오염 등의 문제가 발생하고 있어 가용한 기술기반의 직·간접적 접근을 통한 장기수문 및 환경변화 등에 대한 분석과 관리방안 수립 등의 연구가 필요하다. 본 연구에서는 이러한 미계측 두만강 유역을 대상으로 우선, 가용한 위성자료 및 광역지표모형(MERRA-2) 기반 NASA POWER(Prediction of Worldwide Energy Resource) 수문기상 자료와 SWAT(Soil and Water Assessment Tool) 모형을 활용하여 장기 수문영향을 평가하고자 한다. SWAT 모형은 전 지구적으로 활용 가능한 격자 해상도 약 30m의 위성기반 수치표고모형(DEM), 광역 토양도, 지역 토지이용도 자료를 활용하여 두만강 유역을 전체 19개 소유역 및 18개 하도, 138개 HRUs의 수문분석 단위로 구축하였으며, 모의는 미국 NOAA NCDC(National Climate Data Center) 및 중국 CMDC(China Meteorological Data Service Center)의 주요 관측지점에서 선별한 총 13개소의 위치에 대해 재분석된 기후/기상자료들(NASA POWER 강수, 기온, 풍속, 상대습도 및 일사량)을 적용, 1990년에서 2019년까지의 30개년도 연속자료를 구축활용 하였다. 한편, 모형의 검·보정은 앞서 언급한 관측 자료의 부재로 과거 문헌 등을 통해 파악할 수 있는 연 단위 수자원 총량 등을 활용해 진행코자한다. 아울러, 향후는 최근 활용 가능한 장기 위성관측 강수량을 적용, 재분석 자료 결과와의 비교를 통해 상호 분석 오류를 줄여나갈 수 있을 것으로도 판단된다.

  • PDF

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

Comparative Study on Geochemical Characteristics of Stream Sediments and Mylonitic Granites in the Unbong Area (운봉지역 하상퇴적물과 압쇄상화강암류의 지구화학적 특성 비교연구)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Kim, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.727-738
    • /
    • 2007
  • The present study investigation the geochemical characteristics of the stream sediments in the Unbong area was conducted to enable a understanding the natural background and a prediction the prospects of geochemical disaster as a result of that bed rocks(mylonitic granites, Kim et al., 1992). We systematically collected seventy three stream sediments samples by wet sieving along the primary channels. Major, trace and rare earth element(REE) concentrations, combined with mineralogical characteristics, were determined by XRD, XRF, ICP-AES and NAA analysis methods. Major element concentrations for the stream sediments in the Unbong area were $SiO_2\;36.94{\sim}65.39wt.%,\;Al_2O_3\;10.15{\sim}21.77wt.%,\;Fe_2O_3\;3.17{\sim}10.90wt.%,\;CaO\;0.55{\sim}5.27wt.%,\;MgO\;0.52{\sim}4.94wt.%,\;K_2O\;1.38{\sim}4.54wt.%,\;Na_2O\;0.49{\sim}3.36wt.%,\;TiO_2\;0.39{\sim}1.27wt.%,\;MnO\;0.04{\sim}0.22wt.%,\;P_2O_5\;0.08{\sim}0.54wt.%$. Trace and REE concentrations for the stream sediments were $Cu\;4.8{\sim}134ppm,\;Pb\;24.2{\sim}82.5ppm,\;Sr\;95.9{\sim}739ppm,\;V\;19.9{\sim}124ppm,\;Zr\;52.9{\sim}145ppm,\;Li\;25.2{\sim}3.3ppm,\;Co\;3.87{\sim}50.0ppm,\;Cr\;17.4{\sim}234ppm,\;Hf\;3.93{\sim}25.2ppm,\;Sc\;4.60{\sim}20.6ppm,\;Th\;3.82{\sim}36.9ppm,\;Ce\;45.7{\sim}243ppm,\;Eu\;0.89{\sim}2.69ppm,\;Yb\;1.42{\sim}5.18ppm$. According to the comparison of average major element concentrations, CaO, $Na_2O\;and\;K_2O$ contents are higher in stream sediments than in bed rocks(mylonitic granites, Kim et al., 1992) $Al_2O_3\;and\;SiO_2$ contents show good correlation both stream sediments and bed rocks(mylonitic granites, Kim et al., 1992). Yb and Eu in the stream sediments show a positive correlation with $SiO_2$. In contrast, the stream sediments display a negative correlation.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Selection of Optimal Models for Predicting the Distribution of Invasive Alien Plants Species (IAPS) in Forest Genetic Resource Reserves (산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발)

  • Lim, Chi-hong;Jung, Song-hie;Jung, Su-young;Kim, Nam-shin;Cho, Yong-chan
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.589-600
    • /
    • 2020
  • Effective conservation and management of protected areas require monitoring the settlement of invasive alien species and reducing their dispersion capacity. We simulated the potential distribution of invasive alien plant species (IAPS) using three representative species distribution models (Bioclim, GLM, and MaxEnt) based on the IAPS distribution in the forest genetic resource reserve (2,274ha) in Uljin-gun, Korea. We then selected the realistic and suitable species distribution model that reflects the local region and ecological management characteristics based on the simulation results. The simulation predicted the tendency of the IAPS distributed along the linear landscape elements, such as roads, and including some forest harvested area. The statistical comparison of the prediction and accuracy of each model tested in this study showed that the GLM and MaxEnt models generally had high performance and accuracy compared to the Bioclim model. The Bioclim model calculated the largest potential distribution area, followed by GLM and MaxEnt in that order. The Phenomenological review of the simulation results showed that the sample size more significantly affected the GLM and Bioclim models, while the MaxEnt model was the most consistent regardless of the sample size. The optimal model overall for predicting the distribution of IAPS among the three models was the MaxEnt model. The model selection approach based on detailed flora distribution data presented in this study is expected to be useful for efficiently managing the conservation areas and identifying the realistic and precise species distribution model reflecting local characteristics.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.