• Title/Summary/Keyword: Resonant column test

Search Result 87, Processing Time 0.025 seconds

Characteristics of Dynamic Properties of Granite Specimen from Chungnam Yeongi Area (충남 연기군 지역 화강암 시험편의 동적물성 특성에 관한 연구)

  • Min, June-Hyun;Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.480-493
    • /
    • 2011
  • Dynamic rock property is one of most important parameters in design of earthquake-resistant structures. In this study, free-free resonant column test has been conducted to obtain dynamic Young's modulus, dynamic shear modulus, and damping ratio among dynamic properties with granite specimen of Chungnam Yeongi area. The dynamic properties obtained from this test were compared with the physical properties from static rock tests, and their relationship has been analyzed. From our study, it has been concluded that the dynamic Young's modulus and the dynamic shear modulus are linearly proportional to the elastic wave velocity. And also the damping ratio has been identified to be in non-linear inverse proportion to the elastic wave velocity.

Alternative Method of Determining Resilient Modulus of Subbase Materials Using Free-Free Resonant Column Test (현장공진주시험을 이용한 보조기층 재료의 대체 $M_R$ 시험법)

  • Kweon, Gi-Cheol;Kim, Dong-Su
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.149-161
    • /
    • 2000
  • The stiffness of the subbase materials is represented by the resilient modulus, $M_R$, which are very important properties in the mechanistic design of flexible pavement system. However, the cyclic $M_R$ testing method is too complex, expensive, and time consuming to be applicable on a production basis. In this study, the alternative $M_R$ testing technique for subbase materials was developed using a free-free resonant column (FF-RC) test considering deformational characteristics of subbase materials. To estimate the deformational characteristics of subbase materials, effects of strain amplitude and mean effective stress on modulus of subbase materials were investigated. The $M_R$ values determined by alternative testing procedures matched well with those determined by standard $M_R$ test, showing the capability of the proposed methods being used in determining $M_R$ values.

  • PDF

Evaluation of Seismic Response Characteristics of Hong-Seong Area based on In-Situ and Laboratory Tests (현장 및 실내시험에 기초한 홍성지역 지진응답특성 평가)

  • 박덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2001
  • For the ground resrxmse analysis, both in-situ and laboratory testing techniques such as downhole, SASW, resonant column and torsional shear tests were perlormed for Hong-Seong area. The grOlmd upper 30m is classified as SD since it has an average shear wave velocity as 209m/s. The response specLrums obtained by site-specific analyses generally satisfied the seismic code, but near the resonance period the motion was evaluated to be higher than the code.

  • PDF

Dynamic Deformation Characteristics of Cohesionless Soils Using Resonant Column Tsets (공진주 시험을 이용한 국내 비점성토 지반의 동적변형특성)

  • 김동수;추연옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.98-106
    • /
    • 2001
  • The deformation characteristics of cohesionless soils in Korea were investigated using resonant column tests. Total 60 samples, which were sampled from sedimentary and residual soils and reconstituted using controlled particle-size distributions, were prepared. The confining pressure applied in the tests ranges from 20 kPa to 500 kPa. The test results ware categorized into 3 groups including clean sands, silt and silty sand, and residual soils. Based on test results, the small-strain shear modulus(G$_{max}$) and damping ratio(D$_{min}$) were determined and the effects of confinement on G$_{max}$ and D$_{max}$ were characterized. The empirical correlations predicting G$_{max}$ were suggested for 3 group soils. Nonlinear deformational characteristics of clean sands are significantly affected by confining pressure and the ranges and mean curves for G and D are suggested considering the range of confining Pressure. The silt and silty sand and residual soils were weakly affected by confining pressure, so the representative ranges and curves, independent of confining pressure, were proposed.d.posed.d.

  • PDF

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests (공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구)

  • Park, Jong-Bae;Sim, Young-Jong;Jung, Jong-Suk;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • According to the seismic design criteria for structural buildings in Korea, the ground is classified into 5 types based on the average shear wave velocity measured from elastic wave tests on site and seismic load applied to the structure is estimated. However, elastic wave tests in site, however, on the engineering fill, cannot be performed during the construction period. Therefore, to evaluate shear wave velocity considering field conditions, resonant column (RC) and torsional shear (TS) tests are performed and compared with various elastic wave test results. As a result, if confining pressure for the tests using engineering fill are considered properly, we can obtain similar results comparing with those of elastic wave tests. In addition, by considering the effect of maximum shear modulus and confining pressure by RC/TS tests, n values shows typical values ranging from 0.434 to 0.561 so that utilization of RC/TS tests can be useful to infer shear modulus in field.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil (불포화 이암풍화토의 동적거동)

  • 배중선;이주상;김주철;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

A Methodology to Determine Resilient Modulus for Crushed Rock-Soil Mixture (암버력-토사 성토의 회복탄성계수 산정방법)

  • Park, In-Beom;Kim, Seong-Su;Jung, Young-Hoon;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1190-1200
    • /
    • 2010
  • A method was developed to determine resilient modulus for crushed rock-soil mixtures whose usage has been increased recently without engineering specifications. The method is based on the subtle different modulus called nonlinear dynamic modulus and was lately implemented in residual soils and engineered crushed-stones. Hereby. the same method was expanded to crushed rock-soil mixtures containing as large grain diameter as 300mm. The method utilize field direct-arival tests for the determination of maximum Young's modulus, and a large scale free-free resonant column test, which is recently developed to is capable to test as large grain diameter as 25mm, for modulus reduction curves. The prediction model of resilient modulus was evaluated for crushed rock-soil mixtures of a highway construction site at Gimcheon, Korea.

  • PDF

Nonlinear Dynamic Properties of Fiber Reinforced Soils (섬유혼합토의 비선형 동적물성치)

  • 박철수;황선근;목영진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2003
  • In this paper, deformation characteristics of fiber-mixed-soils were studied at small strain range(0.0001%~1%) using resonant column test and triaxial test, and reinforcement effect was evaluated by the measure of maximum shear moduli. The effects of the major parameters such as fiber content, aspect ratio and fiber type on reinforcement were comparatively assessed. The specimens were remolded from Jumunjin Sand randomly mixed with discrete polypropylene staple fibers. Maximum shear moduli of fiber-mixed-soils increased by up to 30% and modulus reduction was also restrained in nonlinear range. Shear moduli increased as the aspect ratio increases. The reinforcement was more effective with fibrillated fiber than with monofilament fiber. The most effective reinforcement was achieved with the specimen of 0.3 % fiber content.