• Title/Summary/Keyword: Resonance structures

Search Result 761, Processing Time 0.024 seconds

Solution State Structure of P1, the Mimetic Peptide Derived from IgM Antigen Apo B-100 by NMR

  • Kim, Gilhoon;Lee, Hyuk;Oh, Hyewon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Apolipoprotein B-100 (Apo-B100) is a major component of low density lipoprotein (LDL). Apo B-100 protein has 4,536 amino acid sequence and these amino acids are classified into peptide groups A to G with subsequent 20 amino acids (P1-P302). The peptide groups were act as immunoglobulin (Ig) antigens which oxidized via malondialdehyde (MDA). The mimetic peptide P1 (EEEMLENVSLVCPKDAT RFK) out of D-group peptides carrying the highest value of IgG antigens were selected for structural studies that may provide antigen specificity. Circular Dichroism (CD) spectra were measured for peptide secondary structure in the range of 190-250 nm. Experimental results show that P1 exhibit partial of ${\beta}-sheet$ and random coil structure. Homonuclear (COSY, TOCSY, NOESY) 2D-NMR experiments were carried out for NMR signal assignments and structure determination for P1. On the basis of these completely assigned NMR spectra and distance data, distance geometry (DG) and Molecular dynamics (MD) were carried out to determine the structures of P1. The proposed structure was selected by comparisons between experimental NOE spectra and back calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P1 obtained upon superposition of all atoms was in the range $0.33{\AA}$. The solution state P1 has mixed structure of ${\beta}-sheet$ (Glu[1] to Cys[12]) and random coil (Pro[13] to Lys[20]). These NMR results are well consistent with secondary structure from experimental results of circular dichroism. Structural studies based on NMR may contribute to the studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

Improved Purification of Thermophilic FoF1-ATP Synthase c-Subunit Rings and Solid-State NMR Characterization of Them in Different Lipid Membranes

  • Bak, Suyeon;Kang, Su-Jin;Suzuki, Toshiharu;Yoshida, Masasuke;Fujiwara, Toshimichi;Akutsu, Hideo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • ATP synthase produces ATP, a major energy source for metabolic processes in organisms, from ADP and inorganic phosphate in cellular membranes. ATP synthase is known as a rotary motor, in which the c-subunit ring functions as a rotor. In this work, we have tried to develop a more general preparation procedure of thermophilic $F_oc$-ring ($TF_oc$-ring) for NMR measurements. The expression of $TF_oF_1$ is easily affected by various experimental conditions such as temperature, shape and size of a flask, a volume of medium, and shaking rate of an incubator. Accordingly, we have tried to optimize the expression conditions of $TF_oF_1$. $TF_oc$-rings were purified from $TF_oF_1$ according to a reported method. We modified purification procedures to improve purity and yield of $TF_oc$. On top of them, we found a new combination of detergents for the purification at anion-exchange column chromatography. To examine the effect of lipid environments on the structure, the $TF_oc$-rings were reconstituted into two kinds of lipid bilayers, namely, saturated and unsaturated lipid ones. Then, we have compared characteristics of the $TF_oc$-ring structures in these membranes with solid-state NMR.

Surface nuclear magnetic resonance signal contribution in conductive terrains (전도성 지질에서의 SNMR 신호 특성)

  • Hunter Don;Kepic Anton
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • To correctly invert and interpret Surface Nuclear Magnetic Resonance (SNMR) data collected in conductive terrains, an accurate estimate of subsurface conductivity structure is required. Given such an estimate, it would be useful to determine, before conducting an SNMR sounding, whether or not the conductivity structure would prevent groundwater being detected. Using SNMR forward modelling, we describe a method of determining the depth range from which most of the SNMR signal originates, given a model of subsurface conductivity structure. We use the method to estimate SNMR depth penetration in a range of halfspace models and show that for conductive halfspaces ($<10{\Omega}.m$) the depth of penetration Is less than 50 m. It is also shown that for these halfspaces, increasing coincident loop size does not significantly improve depth penetration. The results can be used with halfspace approximations of more complicated ID conductivity structures to give a reasonable estimate of the depth range over which signal is obtainable in conductive terrains.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy

  • Lee, Eun Jung;Kalia, Suneil K.;Hong, Seok Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.353-360
    • /
    • 2019
  • Epilepsy surgery that eliminates the epileptogenic focus or disconnects the epileptic network has the potential to significantly improve seizure control in patients with medically intractable epilepsy. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has been an established option for epilepsy surgery since the US Food and Drug Administration cleared the use of MRgLITT in neurosurgery in 2007. MRgLITT is an ablative stereotactic procedure utilizing heat that is converted from laser energy, and the temperature of the tissue is monitored in real-time by MR thermography. Real-time quantitative thermal monitoring enables titration of laser energy for cellular injury, and it also estimates the extent of tissue damage. MRgLITT is applicable for lesion ablation in cases that the epileptogenic foci are localized and/or deep-seated such as in the mesial temporal lobe epilepsy and hypothalamic hamartoma. Seizure-free outcomes after MRgLITT are comparable to those of open surgery in well-selected patients such as those with mesial temporal sclerosis. Particularly in patients with hypothalamic hamartoma. In addition, MRgLITT can also be applied to ablate multiple discrete lesions of focal cortical dysplasia and tuberous sclerosis complex without the need for multiple craniotomies, as well as disconnection surgery such as corpus callosotomy. Careful planning of the target, the optimal trajectory of the laser probe, and the appropriate parameters for energy delivery are paramount to improve the seizure outcome and to reduce the complication caused by the thermal damage to the surrounding critical structures.

Investigating Volumetric changes of Brain Structure in Women Aged 65 to 85 Years Old (65세부터 85세 여성의 뇌 구조 부피 변화 조사)

  • Kim, Yong-Wane
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.947-956
    • /
    • 2020
  • The human body becomes vulnerable to various diseases due to deterioration in structure and function as it ages. In particular, changes in brain structure weaken the immune system against diseases such as vascular and metabolic neuropsychiatric diseases. In this study, we used a magnetic resonance imaging technique that allows non-invasive observation of brain structures and measurement of how the volumes of the brain, gray matter, white matter, and subcortical regions changes with aging in women aged 65 to 85 years. As a result of our investigation, we observed a significant linear decrease in subcortical regions with age. These results suggest that the changes due to aging in the brain structure area are closely related to neuropsychiatric diseases in old age, and can provide information in understanding the vulnerability of the brain in old age.

The Structural Studies of Biomimetic Peptides P99 Derived from Apo B-100 by NMR

  • Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2020
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo were act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P99 (KGTYG LSCQR DPNTG RLNGE) out of B-group peptides carrying the highest value of IgM antigens were selected for structural studies that may provide antigen specificity. Circular Dichroism (CD) spectra were measured for peptide secondary structure in the range of 190-260 nm. Experimental results show that P99 has pseudo α-helice and random coil structure. Homonuclear (COSY, TOCSY, NOESY) 2D-NMR experiments were carried out for NMR signal assignments and structure determination for P99. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P99. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P99 obtained upon superposition of all atoms were in the set range. The solution state P99 has mixed structure of pseudo α-helix and β-turn(Gln[9] to Thr[13]). These NMR results are well consistent with secondary structure from experimental results of circular dichroism. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

Orthodontic appliances and MR image artefacts: An exploratory in vitro and in vivo study using 1.5-T and 3-T scanners

  • Sonesson, Mikael;Al-Qabandi, Fahad;Mansson, Sven;Abdulraheem, Salem;Bondemark, Lars;Hellen-Halme, Kristina
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Purpose: The aim of this study was to assess the artefacts of 12 fixed orthodontic appliances in magnetic resonance images obtained using 1.5-T and 3-T scanners, and to evaluate different imaging sequences designed to suppress metal artefacts. Materials and Methods: In vitro, study casts of 1 adult with normal occlusion were used. Twelve orthodontic appliances were attached to the study casts and scanned. Turbo spin echo (TSE), TSE with high readout bandwidth, and TSE with view angle tilting and slice encoding for metal artefact correction were used to suppress metal artefacts. Artefacts were measured. In vivo, 6 appliances were scanned: 1) conventional stainless-steel brackets; 2) nickelfree brackets; 3) titanium brackets; 4) a Herbst appliance; 5) a fixed retainer; and 6) a rapid maxillary expander. The maxilla, mandible, nasopharynx, tongue, temporomandibular joints, and cranial base/eye globes were assessed. Scores of 0, 1, 2, and 3 indicated no artefacts and minor, moderate, and major artefacts, respectively. Results: In vitro, titanium brackets and the fixed retainer created minor artefacts. In vivo, titanium brackets caused minor artefacts. Conventional stainless-steel and nickel free brackets, the fixed retainer, and the rapid maxillary expander caused major artefacts in the maxilla and mandible. Conventional stainless-steel and nickel-free brackets caused major artefacts in the eye globe (3-T). TSE with high readout bandwidth reduced image artefacts in both scanners. Conclusion: Titanium brackets, the Herbst appliance, and the fixed retainer caused minor artefacts in images of neurocranial structures(1.5-T and 3-T) when using TSE with high readout bandwidth.

Implementation of Optical Sensor based on Block Surface Wave and Diffraction Grating Profile (Block 표면파와 회절 격자구조에 기초한 광학 센서의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.143-148
    • /
    • 2021
  • A systematic study of Bloch surface wave (BSW), which is created by guided mode resonance (GMR) of dielectric multilayer structures with a grating profile, is presented to analyze the sensing performance of bio-sensors. The effect of structural parameters on optical behavior is evaluated by using Babinet's principle and modal transmission-line theory. The sensitivity of designed bio-sensors is proportional to the grating constant at wavelength spectrum, and inversely proportional to the normal wave vector of incident electromagnetic wave at angular spectrum. Numerical results for two devices with SiO/SiO2 and TiO2/SiO2 multilayer dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based bio-sensors from infrared to visible-band range.

The Structural Studies of Peptide P143 Derived from Apo B-100 by NMR

  • Lee, Ji-Eun;Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.58-63
    • /
    • 2021
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P143 (IALDD AKINF NEKLS QLQTY) out of C-group peptides carrying the highest value of IgG antigens were selected for structural studies that may provide antigen specificity. Experimental results show that P143 has β-sheet in Ile[1]-Asn[9] and α-helice in Gln[16]-Tyr[20] structure. Homonuclear 2D-NMR (COSY, TOCSY, NOESY) experiments were carried out for NMR signal assignments and structure determination for P143. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P143. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P143 obtained upon superposition of all atoms were in the set range. The solution state P143 has a mixed structure of pseudo α-helix and β-turn(Phe[10] to Glu[12]). These results are well consistent with calculated structure from experimental data of NOE spectra. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.