• Title/Summary/Keyword: Resonance structures

Search Result 761, Processing Time 0.039 seconds

Color Tunable Nanostructures by Polarization Control for Display Applications

  • Cho, Eun-Byurl;Ko, Yeong-Il;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.567-567
    • /
    • 2013
  • Surface plasmon resonance is the enhancement of electromagnetic wave caused by oscillation on the metal and dielectric interfaces. Surface plasmons with nanohole arrays provides an enhancedresonance for the specific wavelengths of interests. Asymmetric array of nanoscale structures can enable orientation dependent shift of resonance wavelengths when combined with the control of polarization for incident visible light, thus providing color tunability. Appropriate lattice constants along the direction of polarization in rectangular nanohole arrays can determine the resonance condition generating red (R), green (G), and blue (B) colors and potentially be applied to display applications. In ourprevious report, we have optimized the ion beam nanomachining conditions to fabricate the nanostructures on the metal film. We apply the fabrication conditions to make nanoscale hole arrays using 100 nm thick gold layer on the glass substrate with the optimal design of periodicities along x, y, and diagonal directions of a=440 nm, b=520 nm, c=682 nm, and the hole diameter of d=200 nm. Using the reflective light in dark field mode of optical microscope, we can observe different colors. When the polarizer is paralleled along a, b, or c direction, the represented color is changed to R, G, and B, respectively. We further map the color using i1 to correlate the conditions of the nanohole arrays with their characteristic color.

  • PDF

Analysis of Internal Quality and Magnetic Resonance Characteristics of Red Ginseng Using PCA (주성분 분석을 이용한 홍삼의 내부품질과 자기공명특성 분석)

  • 김성민;김철수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.261-268
    • /
    • 2003
  • Ten MHz pulsed NMR spectrometer was used to measure the magnetic resonance characteristics of Korean red ginseng. The difference in the internal structures of good and bad red ginsengs was examined by their NMR characteristics. Average values of $T_1$ and free induction decay(FID) ratios of under grade Korean red ginseng were the highest among the three groups categorized as normal, medium and under grades Korean red ginseng and average values of $T_2$ and $T_2$$^{*}$ of them were the lowest among the three groups. Principal component analysis(PCA) was used to observe the contribution of measured NMR values to the grade of Korean red ginseng. The measured $T_1$, $T_2$, $T_2$$^{*}$ and FID ratio of 79 Korean red ginsengs classified as normal grade, medium grade and under grade were examined using PCA analysis. Cumulative variance of PC1 through PC3 occupied more than 90% of total variance at first and second NMR measurement. Plots of PC scores for the most important PCs showed that normal red ginseng samples were distributed around the left region of PC1 axis and most of the undergrade red ginseng samples were scattered around the right region of PC1 axis.

Peach & Pit Volume Measurement and 3D Visualization using Magnetic Resonance Imaging Data (자기공명영상을 이용한 복숭아 및 씨의 부피 측정과 3차원 가시화)

  • 김철수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-234
    • /
    • 2002
  • This study was conducted to nondestructively estimate the volumetric information of peach and pit and to visualize the 3D information of internal structure from magnetic resonance imaging(MRI) data. Bruker Biospec 7T spectrometer operating at a proton reosonant frequency of 300 MHz was used for acquisition of MRI data of peach. Image processing algorithms and visualization techniques were implemented by using MATLAB (Mathworks) and Visualization Toolkit(Kitware), respectively. Thresholding algorithm and Kohonen's self organizing map(SOM) were applied to MRI data fur region segmentation. Volumetric information were estimated from segemented images and compared to the actual measurements. The average prediction errors of peach and pit volumes were 4.5%, 26.1%, respectively for the thresholding algorithm. and were 2.1%, 19.9%. respectively for the SOM. Although we couldn't get the statistically meaningful results with the limited number of samples, the average prediction errors were lower when the region segmentation was done by SOM rather than thresholding. The 3D visualization techniques such as isosurface construction and volume rendering were successfully implemented, by which we could nondestructively obtain the useful information of internal structures of peach.

RESONANCE FREQUENCY ANALYSIS OF IMPLANTS WITH ANODIZED SURFACE OXIDES

  • Choi Jeong-Won;Heo Seong-Joo;Chang Ik-Tae;Koak Jai-Young;Han Jong-Hyun;Kim Yong-Sik;Lee Seok-Hyung;Yim Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.294-300
    • /
    • 2004
  • The present experimental study was designed to address two issues. The first was to investigate whether oxidation voltage of titanium implants influenced bone tissue responses after an in vivo implantation. The second aim was to investigate secondary stability change after 1 to 3months period. Screw-shaped implants with a wide range of oxide properties were prepared by electrochemical oxidation methods, where the oxide thickness varied in the range of $3-15{\mu}m$. The micro structure revealed pore sizes of $1-3{\mu}m$, the crystal structures of the titanium oxide were amorphous, anatase and a mixture of anatase and rutile type. Bone tissue responses were evaluated by resonance frequency measurements that were undertaken 1 to 3months after insertion in the rabbit tibia. It was concluded that no statistical difference of RFA values was found between the groups, RFA gains after Imonth and 3months were calculated.

Force Characteristics Analysis to Improve Actuating Performance in Extruded Lens Type Optical Pickup Actuator (렌즈 돌출형 광 픽업 액츄에이터의 구동 성능 향상을 위한 Force 특성 분석)

  • Choi, In-Ho;Hong, Sam-Nyol;Kim, Young-Joong;Suh, Min-Suk;Ahn, Young-Woo;Kim, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1555-1560
    • /
    • 2000
  • Recently, optical pickup actuators have been designed to have structures that extruded lens to decrease their height, because they are used in very thin drive for notebook computers. However, because of discordant and undesirable of forces that are supposed to happen in this design feature, subsidiary resonance such as rolling and pitching mode exert bad influence on actuator. In this paper, we presented force constituents to clarify the cause of subsidiary resonance and proposed new finite element analysis method to calculate force precisely, and performed frequency response analysis to evaluate characteristics of actuators. As a result, we could find out design parameters to diminish the influence of subsidiary resonance. Sample actuators designed with appropriate parameters were fabricated and put to practical tests. Comparing analysis with experimental results, we verified the accuracy of the analysis and the effectiveness of the method presented.

  • PDF

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Persistent Trigeminal Artery Detected by Conventional Angiography and Magnetic Resonance Angiography

  • Kim, Myoung-Soo;Hur, Jin-Woo;Lee, Jong-Won;Lee, Hyun-Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • Objective: A persistent trigeminal artery (PTA) may be found incidentally on conventional cerebral angiography and magnetic resonance(MR) angiography. Our goal is to examine the course and relationships of the vessel to the surrounding structures. Methods: Cerebral angiography was performed in 494 patients and MRA in 880; the patients had or were suspected to have cerebrovascular disease. In the images, the incidence, origin, course, and relationships of the PTA were evaluated. Results: A PTA was found in two (0.4%) of the patients undergoing cerebral angiography and three (0.34%) receiving an MR angiography. In four patients, the PTA arose from the lateral part of the cavernous segment of the internal carotid artery, then passed caudally and around the base of the dorsum sellae. In the other patient, the PTA arose from the medial aspect of the siphon, and ascended sharply to pierce the dorsum sellae and join the basilar artery. In four cases, there was hypoplasia of a proximal basilar artery below the abnormal communication; the vessel was of increased diameter above the communication. Conclusion: Identification of a PTA with a trans-sellar course is crucial if trans-sphenoidal surgery is planned. Hypoplasia of a proximal basilar artery should not be mistaken for an acquired narrowing.

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

Electrical Properties of Interlayer Low Dielectric Polyimide with Electron Cyclotron Resonance Etching Process (ECR 식각 공정에 따른 층간절연막 폴리이미드의 전기적 특성)

  • 김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.13-17
    • /
    • 2000
  • The electrical properties of polyimide for interlayer dielectric applications are investigated with ECR (Electron Cyclotron Resonance) etching process. ECR etching with $Cl_2$-based plasma, generally used for aluminum etching, results in an increase in the dielectric constant of polyimide, while $SF_{6}$ plasma exhibits a high polyimide etch rate and a reducing effect of the dielectric constant. The leakage current of the polyimide is significantly suppressed after plasma exposure. Combination of Al etching with $Cl_2$plasma and polyimide etching with $SF_{6}$ plasma is expected as a good tool for realizing the multilevel metallization structures.

  • PDF

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.