• Title/Summary/Keyword: Resonance mode

Search Result 807, Processing Time 0.025 seconds

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

  • Bogdanowicz, Robert;Sobaszek, Michał;Ficek, Mateusz;Gnyba, Marcin;Ryl, Jacek;Siuzdak, Katarzyna;Bock, Wojtek J.;Smietana, Mateusz
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2015
  • The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.

Design and Evaluation of a Lung Assist Device for Patients with Acute Respiratory Syndrome using Hollow Fiber Membranes (중공사 막을 이용한 급성호흡곤란증후군 환자용 폐 보조 장치의 설계와 평가)

  • Lee, Sam-Cheol;Kwon, O-Sung;Kim, Ho-Cheol;Hwang, Young-Sil;Lee, Hyun-Cheol
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • The use of the lung assist device (LAD) would be well suited for acute respiratory failure (ARF) patients, combining the simplicity of mechanical ventilation with the ability of extracoporeal membrane oxygenators (ECMO) to provide temporary relief for the natural lungs. This study's specific attention was focused on the effect of membrane vibration in the LAD. Quantitative experimental measurements were performed to evaluate the performance of the device, and to identify membrane vibration dependence on blood hemolysis. We tried to decide upon excited frequency band of limit hemolysis when blood hemolysis came to through a membrane vibration action. The excited frequency of the module type 5, consisted of 675 hollow fiber membranes, showed the maximum gas transfer rate. We concluded that the maximum oxygen transfer rate seemed to be caused by the occurrence of maximum amplitude and the transfer of vibration to hollow fiber membranes. It was excited up to $25{\pm}5$ Hz at each blood flow rate of module type 5. We found that this frequency became the 2nd mode resonance riequency of the flexible in blood flow. Blood hemolysis was low at the excited frequency of $25{\pm}5$ Hz. Therefore, we decided that limit hemolysis frequency of this LAD was $25{\pm}5$ Hz.

Medical Image Compression Using JPEG International Standard (JPEG 표준안을 이용한 의료 영상 압축)

  • Ahn, Chang-Beom;Han, Sang-Woo;Kim, Il-Yoen
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.504-506
    • /
    • 1993
  • The Joint Photographic Experts Group (JPEG) standard was proposed by the International Standardization Organization (ISO/SC 29/WG 10) and the CCITT SG VIII as an international standard for digital continuous-tone still image compression. The JPEG standard has been widely accepted in electronic imaging, computer graphics, and multi-media applications, however, due to the lossy character of the JPEG compression its application in the field of medical imaging has been limited. In this paper, the JPEG standard was applied to a series of head sections of magnetic resonance (MR) images (256 gray levels, $256{\times}256$ size) and its performance was investigated. For this purpose, DCT-based sequential mode of the JPEG standard was implemented using the CL550 compression chip and progressive and lossless coding was implemented by software without additional hardware. From the experiment, it appears that the compression ratio of about 10 to 20 was obtained for the MR images without noticeable distortion. It is also noted that the error signal between the reconstructed image by the JPEG and the original image was nearly random noise without causing any special-pattern-related artifact. Although the coding efficiency of the progressive and hierarchical coding is identical to that of the sequential coding in compression ratio and SNR, it has useful features In fast search of patient Image from huge image data base and in remote diagnosis through slow public communication channel.

  • PDF

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

Evaluation of Metabolic Abnormality in Brain Tumors by In Viuo $^1$H MR Spectroscopy at 3 Tesla (3T 양성자 자기공명분광에 의한 뇌종양의 대사물질 이상소견)

  • Choe, Bo-Young;Jeun, Sin-Soo;Kim, Bum-Soo;Lee, Jae-Mun;Chung, Sung-Taek;Ahn, Chang-Beom;Oh, Chang-Hyun;Kim, Sun I.;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.120-128
    • /
    • 2002
  • To investigate differences between the metabolic ratios of normal controls and brain tumors such as astrocytomas and glioblastoma multiforme (GM) by proton MR spectroscopy (MRS) at 37 high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio. The variation of metabolites measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67$\pm$018 and 1.16$\pm$0.15, respectively. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (P=0.005). Cho/Cr ratio of glioblastoma multiforme was significantly higher than that of astrocytomas (P=0.001). Lactate was observed in all tumor cases. The present study demonstrated that the neuronal degradation or loss was observed in all tumor tissues. Higher grade of brain tumors was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. This results suggest that clinical proton MR spectroscopy could be useful to predict tumor malignancy.

  • PDF