• 제목/요약/키워드: Resonance coupling

검색결과 396건 처리시간 0.022초

하소온도가 BaTiO3 세라믹의 Kp와 공진특성에 미치는 영향 (Effects of Calcining Temperature on Planar Coupling Factor and Resonance Charcteristics of BaTiO3)

  • 정수태;조상희
    • 한국세라믹학회지
    • /
    • 제23권6호
    • /
    • pp.66-70
    • /
    • 1986
  • The calcining temperature ranging from 900$^{\circ}C$ to 1300$^{\circ}C$ affected on the planar coupling factor and resonance characteristics of BaTiO3 ceramics doped with 0.2 wt% MnO2 have been investigated. Dielectric constant planar coupling factor and anti-resonance frequency of the sample increased with the calcining temperature up to 1,200$^{\circ}C$ and decreased above that temperature but the resonance frequency decreased slightly with the increasing calcining temperature. The planar coupling factor and anti-resonance frequency increased with the sintered density and dielectric constant while the resonance frequency was almost constant. The resonance and anti-resonance frequency increased with the sample temperature.

  • PDF

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구 (Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation)

  • 이경민;윤순길;정종율
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Analysis on the cascade high power piezoelectric ultrasonic transducers

  • Lin, Shuyu;Xu, Jie
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2018
  • A new type of cascade sandwiched piezoelectric ultrasonic transducer is presented and studied. The cascade transducer is composed of two traditional longitudinally sandwiched piezoelectric transducers, which are connected together in series mechanically and in parallel electrically. Based on the analytical method, the electromechanical equivalent circuit of the cascade transducer is derived and the resonance/anti-resonance frequency equations are obtained. The impedance characteristics and the vibrational modes of the transducer are analyzed. By means of numerical method, the dependency of the resonance/anti-resonance frequency and the effective electromechanical coupling coefficient on the geometrical dimensions of the cascade transducer are studied and some interesting conclusions are obtained. Two prototypes of the cascade transducers are designed and made; the resonance/anti-resonance frequency is measured. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the experimental results. It is expected that this kind of cascade transducer can be used in large power and high intensity ultrasonic applications, such as ultrasonic liquid processing, ultrasonic metal machining and ultrasonic welding and soldering.

측면 연마 광섬유를 이용한 용액의 광학 특성 측정 (Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber)

  • 이현진;김광택
    • 한국전기전자재료학회논문지
    • /
    • 제27권3호
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.

Theoretical and practical features of J-scaled distortion-free HSQC

  • Cha, Jin Wook;Park, Sunghyouk
    • 한국자기공명학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Employing of 13C stable-isotopes in NMR metabolomics can give unique splitting patterns and coupling constants information originated from 13C-13C coupling interaction that provide an important structural information regarding the cellular metabolic process. But it has been known that an undesirable signal distortion in 2D heteronuclear correlation study, due to 13C-13C interaction, hampers an analysis of the coupling information. Recently, we proposed J-scaled distortion-free heteronuclear single-quantum coherence (HSQC) sequence which provides a distortion-free 13C-13C coupling information with a selective resolution enhancement of JCC splitting. In this paper, we dicuss theoretical aspect and practical feature of J-scaled HSQC pulse sequence. The conceptual explanation of orgin of the signal distortion by 13C-13C coupling interaction and design of J-scaled HSQC through exemplified results are provided in brief.

여기부와의 전자파 결합 현상을 고려한 위스퍼링 갤러리 모드 유전체 공진기의 공진주파수에 관한 연구 (A Study on Resonance Frequencies of a Whispering Gallery Mode Dielectric Resonator Considering Electromagnetic Coupling Phenomena with an Excitation Part)

  • 황재효;민경일;구경완
    • 한국전자파학회논문지
    • /
    • 제9권5호
    • /
    • pp.603-613
    • /
    • 1998
  • 위스퍼링 갤러리 모드가 동작하는 유전체 원판 공진기의 공진 특성은 모드를 여기시키기 위하여 원판 공진기 주위에 배치한 외부 회로에 의하여 영향올 받게 된다. 이러한 현상올 해석하기 위하여, 원판 공진기를 모드 결합이 일어나는 결합부와 결합이 일어나지 않는 비결합부로 나누어 해석하였다. 결합부에서는 원판올 정합회로로 임피던스 매칭한 후, 비평형 유전체 도파로의 결합 전송 방정식을 유도하였다. 결합 전송 방정식으로부터 결합 계수, 결합 전자계 분포, 전력의 이동량 및 모드 결합 현상을 고려한 공진 주파수를 계산하였다. 또한, 공진 특성에 관한 실험을 통하여, 공진 주파수의 계산치와 실험치 간의 오차가 약 1.28%이고 FSR의 경우 약 0.6%임을 알 수 있었다.

  • PDF

Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

  • Chung, Y.D.;Lee, C.Y.;Lee, S.Y.;Lee, T.W.;Kim, J.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.41-45
    • /
    • 2016
  • The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

디젤엔진의 가진에 의한 선박용 추진 축계의 공진 (The Resonance of Marine Propulsion Shaft System excited by Diesel Engine)

  • 이돈출;강봉룡
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 2009
  • The propulsion system which apply the diesel engine with reduction gear as prime mover, generally installs the elastic coupling between engine and intermediate shaft, This coupling can isolate the vibratory torque excited by diesel engine, or the excess transient torque and moment occurring by external impact. So, diesel engine and reduction gear can safely operate by elastic coupling. Unfortunately, the elastic coupling for skimmer vessel was repeatedly broken by unknown vibration during the sea trial In this paper, the authors are searching for the possibilities and causes of the elastic coupling failure, via the global vibration measurement and the past incident investigation.

  • PDF