• 제목/요약/키워드: Resonance Response

검색결과 769건 처리시간 0.029초

Internal resonance and nonlinear response of an axially moving beam: two numerical techniques

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.235-245
    • /
    • 2012
  • The nonlinear resonant response of an axially moving beam is investigated in this paper via two different numerical techniques: the pseudo-arclength continuation technique and direct time integration. In particular, the response is examined for the system in the neighborhood of a three-to-one internal resonance between the first two modes as well as for the case where it is not. The equation of motion is reduced into a set of nonlinear ordinary differential equation via the Galerkin technique. This set is solved using the pseudo-arclength continuation technique and the results are confirmed through use of direct time integration. Vibration characteristics of the system are presented in the form of frequency-response curves, time histories, phase-plane diagrams, and fast Fourier transforms (FFTs).

백래시 크기 변화 감지를 위한 주파수응답특성의 활용 (The Utilization of Frequency Response Characteristic for the Detection of Change of Backlash Magnitude)

  • 백주현
    • 한국시뮬레이션학회논문지
    • /
    • 제24권3호
    • /
    • pp.45-54
    • /
    • 2015
  • 본 논문에서는 기어감속 서보시스템의 모터입력전압 크기를 적절히 감소시키면 모터입력전압에 대한 모터각속도에서 나타나는 주파수응답특성에 미치는 백래시 영향이 매우 커지게 됨을 보여 주였다. 또한 주파수응답선도에서 나타나는 반공진 및 공진주파수 변화량을 관찰하여 기어감속 서보시스템 내 기어 백래시 변화를 감지할 수 있는 방법의 유용성을 이론적, 시뮬레이션 및 실험적으로 검증하였다. 반공진주파수 변화가 공진주파수 변화 보다 안정적으로 계측될 수 있으므로 백래시 크기 변화감지 시 반공진주파수 변화량 관찰이 좀 더 유용하며, 공진주파수는 모터입력전압을 충분히 감속시켜야 급격한 변화를 관찰할 수 있음을 보여주었다. 본 연구는 기어감속 서보시스템 내 백래시 크기 변화 감지에 대한 향후 연구에 있어서 유용하게 사용될 수 있을 것이라고 생각한다.

국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석 (Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions)

  • 김준경
    • 한국지반환경공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.81-87
    • /
    • 2011
  • 최근 국내에서 발생한 20개의 중규모 지진으로부터 관측된 지반진동 파형을 이용하여 수직 대 수평 응답스펙트럼의 비율을 분석하였다. 연구에 이용된 지반진동은 수평성분 260개, 수직성분은 130개이며 고유진동수별 지반응답을 구하고 최대 지반 가속도 값을 이용하여 정규화 분석을 수행하였다. 국내에서 관측된 지반진동을 이용한 수직 대 수평성분 응답스펙트럼 비율의 특성은 민감도가 가장 높은 것으로 알려져 있는 진앙거리 및 고유진동수에 의한 영향이 뚜렷하게 존재하고 있음을 확인하였다. 0-50km 진앙거리 그룹의 수직 대 수평 응답스펙트럼 비율은 고유진동수 약 7-8Hz 이상 부터 2/3를 초과하고 있음을 보여주었다. 50-100km, 100-150km 및 150-200km의 진앙거리 그룹은 보다 높은 약 15Hz 이상부터 3 그룹 모두 2/3를 초과하고 있으며 또한 약 8-10Hz보다 낮은 고유진동수에서 역시 2/3 이하로 떨어지지 않고 오히려 다시 초과하고 있음을 보여주고 있다. 따라서 내진설계 대상인 구조물로부터 약 200km 이내 지진유발단층이 존재하는 경우 진앙거리마다 고유진동수값에 약간 차이가 존재하나 높은 및 낮은 고유진동수 영역에서 기존의 2/3값을 초과하기 때문에 수직성분의 보수성을 보다 심각하게 고려할 필요가 있다고 해석된다.

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

Anti-windup 보상기의 점프공진에 관한 연구 (Jump resonance in anti-windup compensator for systems with saturating actuators)

  • 박영진;장원욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1060-1066
    • /
    • 1992
  • One of the undesirable nonlinear phenomenon called 'wind up' occours when the integrator in the controller and the saturated actuator interact. Large overshoot, slow response, instability, limit cycle and jump resonance are the characteristics of wind up phenomenon. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instabilituy and limit cycle, but none has studied the effect of antiwindup compensator on the jump resonance. In this paper, we developed an analyitcal method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance of effectively.

  • PDF

내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교 (Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance)

  • 조덕상;이원경
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

위상최적설계 기법을 이용한 동적 시스템 규명 (Dynamic System Identification Using the Topology Optimization Method)

  • 이중석;김재은;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.120-123
    • /
    • 2005
  • A dynamic system identification technique based on the topology optimization method is developed. The specific problem in consideration is the damage location identification of a plate structure using the Frequency Response Function (FRF) of a damaged structure. In this work, the identification problem is formulated as a topology optimization problem. The importance of using anti-resonance information in addition to using resonance information is addressed. Though a simple problem was considered here, the possibility of using the topology optimization for damage identification is investigated lot the first time.

  • PDF

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

Retrospective dosimetry using fingernail electron paramagnetic resonance response

  • Noori, Abbas;Mostajaboddavati, Mojtaba;Ziaie, Farhood
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.526-530
    • /
    • 2018
  • Human fingernails were used to estimate the radiation dose via electron paramagnetic resonance measurements of radiation-induced radicals. The limiting factors in this research were mechanically induced electron paramagnetic resonance signals due to the mechanical stress during the preparation of the samples. Therefore, different treatment methods of fingernails were used to reduce the mechanically induced signals. The results demonstrate that the mechanically induced and radiation-induced signals have apparently different microwave power saturation behaviors. In addition, the mechanically induced signal shows a fading evolution over time and reaches a constant value. Chemical treatment using the different reagents showed that the minimum mechanically induced signal was obtained using the dithiothreitol reagent. The dose-response curves of the samples treated with dithiothreitol for 30 minutes demonstrated a greater linearity than those of samples treated for 5 minutes. Therefore, to find an unknown absorbed dose in a fingernail sample using a calibration curve, we recommend adopting the mentioned chemical treatment procedure to reduce the uncertainty.