• Title/Summary/Keyword: Resonance Durability Analysis

Search Result 25, Processing Time 0.024 seconds

Structural Dynamic Analysis of Low Vibrating Composite Helicopter Rotor Blades (복합재료 헬리콥터 로터 블레이드의 저진동 설계에 관한 연구)

  • Kee, Young-Jung;Shim, Jeong-Wook;Lee, Myeong-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.902-905
    • /
    • 2004
  • Recently, the composite materials are widely used for manufacturing the helicopter rotor blades. furthermore, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. To keep with this advantages, it is necessary to calculate natural frequencies of a rotating blades for avoiding resonance. In this paper, the structural design process of airfoil cross section is introduced, and natural frequencies of composite rotor blades with variable rpm we investigated.

  • PDF

A Study on the Structural Stability of a Jig for Evaluating the Vibration Durability of a Hydraulic Hose (유압 호스의 진동 내구성 평가를 위한 지그의 구조적 안정성에 관한 연구)

  • Kim, Chae-Sil;Jun, Min-Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.125-131
    • /
    • 2021
  • For the vibration reliability tests, the jigs for mounting the test specimen on a vibration reliability tester are required. The dynamic stabilities of the jigs should be verified before the tests for obtaining the accurate reliability of the test specimen. This paper proposes an analytical technology for ensuring the dynamic structural stability for the test setup including the jig. The technology includes the mode analyses for checking resonance, the harmonic analyses for evaluating the dynamic structural stability of test setup including the jig, and the fatigue analyses for obtaining the durable reliability time with calculating the life cycles at the area of weakness. The cause investigation of the damaged jig during vibration reliability test of a rubber hose and the design of new revised jig are performed by using the technology. The vibration reliability test for the rubber hose with the new revised jig by analysis results is successfully conducted without any problem. Therefore the jig's design technology proposed in this paper may be useful for other items as well.

A Numerical Analysis on the Vibration Characteristics of Rotating Composite Blades (회전하는 복합재료 블레이드의 진동특성에 대한 수치해석)

  • Kee, Young-Jung;Song, Keun-Woong;Kim, Deog-Kwan;Shim, Jeong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • The rotor blade of a helicopter is the key structural units and provides three components such as vertical lifting force, horizontal propulsive force and control force. With advancements in aerospace technology, composite materials have been widely used in lightweight structures. In addition, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. In the operational condition of a helicopter, it is required the vibration characteristics of the rotating blades for avoiding resonance and analysis of efficient performance prediction et al. In this study, the CAMRAD-II is used for analyzing the vibration characteristics of rotating composite blades. The effects of rotating speed and collective angles are investigated. Also, the numerical results are compared with experimental data.

  • PDF

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.105-111
    • /
    • 2008
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

  • PDF

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

A Study on Ensuring Reliability of Hydraulic Pumps for Wheeled Armored Vehicles through Analysis and Testing (차륜형장갑차용 유압펌프의 해석 및 시험을 통한 신뢰성 확보에 관한 연구)

  • Kim, Won-Jae;Lee, Ho-Jun;Choi, Chung-Seok;Seo, Suk-Ho;Choi, Sung-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.78-84
    • /
    • 2020
  • This paper introduces the structural and vibration analysis performed in the localization development process of hydraulic pumps used in wheeled armored vehicles. The maximum strain, maximum stress, maximum displacement, and minimum safety factor were calculated using structural analysis. Furthermore, it was found that the dangerous resonance frequency was avoided through vibration analysis. In addition, the reliability of the analysis results was verified by passing various tests, such as the actual vibration test and the actual durability test. The developed hydraulic pump is expected to contribute significantly to the maintenance of military vehicles in the future.

A Study on the Dynamic Stability of Heavy Press Considering Rotational Speed (회전 속도를 고려한 대형 프레스의 동적 안정성에 관한 연구)

  • Shin, Min Jae;Kim, Chae Sil;Keum, Chang Min;Kim, Jae Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.623-628
    • /
    • 2016
  • This article describes the determination of the dynamic stability for a heavy press, particularly considering rotational speed. A finite element model of the driving parts for the heavy press was generated. We also applied boundary conditions and dynamic loads considering the driving conditions. Modal analysis was conducted using the finite element construction model. Therefore, no resonance was identified with the comparison between the results of the modal analysis and vibration excitation frequency by the gear tooth. In addition, the stress distribution of the driving parts for press was determined using transient analysis. As compared to the yield strength of the material, the dynamic stability the heavy press was confirmed.

On Installation of Bus Trunk System for Wind Tower (풍력타워용 부스닥트 포설시스템 개발)

  • Lee, Joon-Keun;Kim, Bong-Seok;Park, Seong-Hee;Ahn, Hyung-Joon;Lee, Hee-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.330-335
    • /
    • 2012
  • A Bus Trunk System for Wind Tower is introduced. A marine cable has been widely used in wind tower or other offshore structure. However, as the electric load capacity is getting increased, the large number of cable lines should be used to cover such a huge amount of electric capacities, which makes the installation make quite difficult due to the heavy weight and volume of the present cables. On the other hand, by using a single bus trunk system line, the power capacity amount of 16 number of cable can be delivered with significant compactness. However, unlike flexible cable, the bus trunk is relatively stiff which could arise resonance phenomenon in the operating condition of wind tower, therefore, the vibration characteristics of bus trunk should be investigated and verify its long-term reliability during the life time of the wind tower.

  • PDF

Vibration Analysis and Reduction for Large-scale Diesel Engines (대형 디젤엔진의 진동 분석과 저감)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Wook-Ryun;Lee, Doo-Young;Kim, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1047-1052
    • /
    • 2011
  • Diesel engines are widely used as power supplies for isolated islands as well as emergency power supplies for large-capacity power plants because of their rapid response to operation, high reliability, and good durability. However, diesel engines are also vulnerable to damage or degradation of reliability when high levels of vibration are generated in them. This paper shows experiments and analysis for the determination of the causes of high-vibration phenomena in large-scale diesel engines, which have experienced various power decreases over several years because of the high levels of vibration. The main cause of the vibration is identified as the resonance created by the torsional vibration of its crank axis, and the appropriate countermeasures that were designed worked well when applied in field tests.

A Study on the Dynamic Stability of Observation Antenna Considering Rotational Speed by Payload Drive Motor (Payload 구동용 모터의 회전 속도를 고려한 관측안테나의 동적 안정성에 관한 연구)

  • Kim, Chae Sil;Shin, Min Jae;Keum, Chang Min;Kim, Jae Min;Choi, Hun Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.617-622
    • /
    • 2016
  • The article describes the determination of the dynamic stability for an observation antenna, considering the rotational speed by the payload driving motor. A finite element model of the observation antenna was made using the solid and beam elements. The connecting parts between the solid and the beam was adequately coupled. The boundary conditions were made by restriction of the degree of freedoms in the supporting points. With the comparison between the modal analysis results and the rotating speed of the payload driving motor, no resonance for the structure of antenna was identified and first natural frequency was determined under 33 Hz (Seismic Cut-Off Frequency). Therefore, the dynamic stability of the antenna was confirmed by the comparism between the seismic safety criterion and the stress results of the dynamic analysis applied the loading conditions and required response spectrum (RRS).