• 제목/요약/키워드: Resnet

검색결과 61건 처리시간 0.028초

적응형 이진화와 Convex Hull 전처리 및 합성곱 신경망 학습 방법을 적용한 고무 오링 불량 판별 (Rubber O-ring defect detection using adaptive binarization, Convex Hull preprocessing, and convolutional neural network learning method)

  • 성은산;김현태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.623-625
    • /
    • 2021
  • 고무 오링은 일반적인 사출 성형 방식으로 생산된다. 이때 정상적으로 성형되지 않은 제품은 무조건 불량으로 판별한다. 그러나 영상기반 판독 시 획득한 영상을 원본 그대로 판독 할 경우 정확도가 떨어지는 문제가 발생한다. 이에 획득한 영상을 적응형 이진화와 Convex Hull 알고리즘을 사용한 전처리를 통해 원본영상에서 고무 오링 부분만 추출하여 합성곱 신경망에 학습하였다. 테스트 과정에서 제안하는 전처리를 적용한 학습방법의 불량검출 성능이 제시한 기준치 보다 나은 성능을 보이는 것을 확인 할 수 있었다.

  • PDF

합성곱 신경망을 이용한 동결절편의 암세포 전이 여부 자동진단에 관한 예비연구 (A Pilot Study on Automatic Diagnosis of Cancer Cells Metastasis in Frozen Section Using Convolutional Neural Network)

  • 정대일;강재구;전혜린;오세종;김성철;김영곤;공경엽;송인혜;박소연;안수민;이현나;양동현;유원상
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.480-482
    • /
    • 2020
  • 동결절편검사는 수술과 연계하여 암 전이 여부를 판단하기 위한 응급한 병리검사가 필요할 때 이용된다. 합성곱 신경망은 이미지 분류에 뛰어난 성능을 보이는 딥러닝 기법으로 본 논문에서는 이를 이용하여 유방암 전이 여부를 자동적으로 진단하는 방법을 제안한다. 실험과정은 전처리, 학습, 후처리의 과정으로 구성되어 있으며, 합성곱 신경망으로는 Resnet-18 모델을 사용하였다. 실험결과 예측 정확도 및 종양의 최대 길이 정합 여부를 점수로 환산하여 약 0.514 의 결과를 보였다.

암세포 영상분류를 위한 심층학습 모델 연구 (Deep Learning Model for Classification of Multiple Cancer Cell Lines)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.394-396
    • /
    • 2021
  • 특정 질병 진단을 위한 병리 검사는 필수적이며, 최근 이러한 분야의 시간적, 인적 자원의 필요성을 줄이기 위해 인공 지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구에서는 제한적인 심층학습 알고리즘에 기인한 비교적 낮은 정확도로 데이터 처리에 한계가 존재하였다. 본 연구에서는 심층 학습의 일종인 Convolution Neral Network를 통해 4종류의 암세포를 4 Class Classifciation을 시행하는 방법을 제안한다. EfficientNet, ResNet, Inception을 사용하였으며 여러 하이퍼 파라미터 튜닝을 통해 얻은 모델을 앙상블 하여 최종적으로 97.26의 정확도를 얻을 수 있었다.

  • PDF

MRI 이미지 기반의 알츠하이머 치매분류 알고리즘 (Algorithm for Classifiation of Alzheimer's Dementia based on MRI Image)

  • 이재경;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.97-99
    • /
    • 2021
  • 최근 고령화 사회가 지속됨에 따라, 치매(Dementia)에 대한 관심이 높아지고 있다. 그 중에서 알츠하이머병(Alzheimer's disease)는 전체 치매 환자의 50~60%로 가장 많은 비율을 차지하는 퇴행성 뇌질환으로, 현재 의료계에선 알츠하이머병에 대한 명확한 예방법 및 치료법에 대해 내놓지 못하고 있으며, 치매 발병 전 조기 치료 및 조기 예방법에 대한 중요성이 강조되고 있다. 본 논문에서는 정상인과 알츠하이머병에 걸린 환자의 MRI 데이터셋을 활용하여 컨볼루션 신경망을 중심으로 여러 가지 활성화 함수를 접목시켜, 가장 효율적인 활성화 함수를 찾고자 한다. 또한 알츠하이머 치매분류 모델링을 통해 향후 의료분야에 적합한 치매 구분 모델링으로 활용하고자 한다.

  • PDF

Deep Learning for Weeds' Growth Point Detection based on U-Net

  • Arsa, Dewa Made Sri;Lee, Jonghoon;Won, Okjae;Kim, Hyongsuk
    • 스마트미디어저널
    • /
    • 제11권7호
    • /
    • pp.94-103
    • /
    • 2022
  • Weeds bring disadvantages to crops since they can damage them, and a clean treatment with less pollution and contamination should be developed. Artificial intelligence gives new hope to agriculture to achieve smart farming. This study delivers an automated weeds growth point detection using deep learning. This study proposes a combination of semantic graphics for generating data annotation and U-Net with pre-trained deep learning as a backbone for locating the growth point of the weeds on the given field scene. The dataset was collected from an actual field. We measured the intersection over union, f1-score, precision, and recall to evaluate our method. Moreover, Mobilenet V2 was chosen as the backbone and compared with Resnet 34. The results showed that the proposed method was accurate enough to detect the growth point and handle the brightness variation. The best performance was achieved by Mobilenet V2 as a backbone with IoU 96.81%, precision 97.77%, recall 98.97%, and f1-score 97.30%.

CNN 의 파라미터와 정확도간 상호 강인성 연구 및 파라미터 비트 연산 자동화 프레임워크 개발 (Study the mutual robustness between parameter and accuracy in CNNs and developed an Automated Parameter Bit Operation Framework)

  • 이동인;김정헌 ;임승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.451-452
    • /
    • 2023
  • 최근 CNN 이 다양한 산업에 확산되고 있으며, IoT 기기 및 엣지 컴퓨팅에 적합한 경량 모델에 대한 연구가 급증하고 있다. 본 논문에서는 CNN 모델의 파라미터 비트 연산을 위한 자동화 프레임워크를 제안하고, 파라미터 비트와 모델 정확도 사이의 관계를 실험 및 연구한다. 제안된 프레임워크는 하위 n- bit 를 0 으로 설정하여 정보 손실 발생시킴으로써 ImageNet 데이터셋으로 사전 학습된 CNN 모델의 파라미터와 정확도의 강인성을 비트 단위로 체계적으로 실험할 수 있다. 우리는 비트 연산을 수행한 파라미터로 InceptionV3, InceptionResnetV2, ResNet50, Xception, DenseNet121, MobileNetV1, MobileNetV2 모델의 정확도를 평가한다. 실험 결과는 성능이 낮은 모델일수록 파라미터와 정확도 간의 강인성이 높아 성능이 좋은 모델보다 정확도를 유지하는 비트 수가 적다는 것을 보여준다.

동물 X-ray 영상에서 경골고원각도 자동 검출을 위한 심층신경망 기법 (A Deep Neural Network Technique for Automatic Measurement of Tibial Plateau Angle from Animal X-ray Images)

  • 김지민 ;김형규 ;류정현 ;이선주 ;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.579-580
    • /
    • 2023
  • 본 논문에서는 동물의 십자인대 질환의 진단지표인 경골고원각도(TPA)를 자동으로 측정하는 딥러닝 소프트웨어 기법을 제안한다. 동물 X-ray 영상에서 나타나는 피사체의 위치와 형태에 대한 다양한 변이는 TPA(Tibial Plateau Angle) 지표 산출에 필요한 특징점 검출과정에서 학습 효율을 현저하게 저하시킨다. 이에 본 연구에서는 YOLO(You Only Look Once) 기반 모델을 사용하여 일차적으로 경골영역의 분할 단계를 수행하고, 이어서 경골 상단부의 과간융기와 복사뼈의 중심점을 찾는 과정을 Resnet 기반의 특징점 추출 모듈로서 구현함으로써 학습의 효율과 지표 검출의 정확도를 향상시켰다. 총 201 개의 실제 X-ray 영상을 사용하여 학습 속도와 영역 분할 및 특징점 추출의 정확도 측면을 고려함으로 제안된 이론의 타당성을 실험적으로 평가하였다.

Enhanced CT-image for Covid-19 classification using ResNet 50

  • Lobna M. Abouelmagd;Manal soubhy Ali Elbelkasy
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.119-126
    • /
    • 2024
  • Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pretrain Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.

다시점 영상 집합을 활용한 선체 블록 분류를 위한 CNN 모델 성능 비교 연구 (Comparison Study of the Performance of CNN Models with Multi-view Image Set on the Classification of Ship Hull Blocks)

  • 전해명;노재규
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.140-151
    • /
    • 2020
  • It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity by spending time to find where the exact hull block is. In order to solve this problem, it is necessary to equip the system to track the location of the blocks and to identify the identification numbers of the blocks automatically. There were a lot of researches of location tracking system for the hull blocks on the stockyard. However there has been no research to identify the hull blocks on the stockyard. This study compares the performance of 5 Convolutional Neural Network (CNN) models with multi-view image set on the classification of the hull blocks to identify the blocks on the stockyard. The CNN models are open algorithms of ImageNet Large-Scale Visual Recognition Competition (ILSVRC). Four scaled hull block models are used to acquire the images of ship hull blocks. Learning and transfer learning of the CNN models with original training data and augmented data of the original training data were done. 20 tests and predictions in consideration of five CNN models and four cases of training conditions are performed. In order to compare the classification performance of the CNN models, accuracy and average F1-Score from confusion matrix are adopted as the performance measures. As a result of the comparison, Resnet-152v2 model shows the highest accuracy and average F1-Score with full block prediction image set and with cropped block prediction image set.

영상변형:얼굴 스케치와 사진간의 증명가능한 영상변형 네트워크 (Image Translation: Verifiable Image Transformation Networks for Face Sketch-Photo and Photo-Sketch)

  • 숭타이리엥;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.451-454
    • /
    • 2019
  • In this paper, we propose a verifiable image transformation networks to transform face sketch to photo and vice versa. Face sketch-photo is very popular in computer vision applications. It has been used in some specific official departments such as law enforcement and digital entertainment. There are several existing face sketch-photo synthesizing methods that use feed-forward convolution neural networks; however, it is hard to assure whether the results of the methods are well mapped by depending only on loss values or accuracy results alone. In our approach, we use two Resnet encoder-decoder networks as image transformation networks. One is for sketch-photo and another is for photo-sketch. They depend on each other to verify their output results during training. For example, using photo-sketch transformation networks to verify the photo result of sketch-photo by inputting the result to the photo-sketch transformation networks and find loss between the reversed transformed result with ground-truth sketch. Likely, we can verify the sketch result as well in a reverse way. Our networks contain two loss functions such as sketch-photo loss and photo-sketch loss for the basic transformation stages and the other two-loss functions such as sketch-photo verification loss and photo-sketch verification loss for the verification stages. Our experiment results on CUFS dataset achieve reasonable results compared with the state-of-the-art approaches.