• Title/Summary/Keyword: Resistive memory

Search Result 111, Processing Time 0.028 seconds

Relation between Resistance and Capacitance in Atomically Dispersed Pt-SiO2 Thin Films for Multilevel Resistance Switching Memory (Pt 나노입자가 분산된 SiO2 박막의 저항-정전용량 관계)

  • Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.429-434
    • /
    • 2015
  • Resistance switching memory cells were fabricated using atomically dispersed Pt-$SiO_2$ thin film prepared via RF co-sputtering. The memory cell can switch between a low-resistance-state and a high-resistance-state reversibly and reproducibly through applying alternate voltage polarities. Percolated conducting paths are the origin of the low-resistance-state, while trapping electrons in the negative U-center in the Pt-$SiO_2$ interface cause the high-resistance-state. Intermediate resistance-states are obtained through controlling the compliance current, which can be applied to multi-level operation for high memory density. It is found that the resistance value is related to the capacitance of the memory cell: a 265-fold increase in resistance induces a 2.68-fold increase in capacitance. The exponential growth model of the conducting paths can explain the quantitative relationship of resistance-capacitance. The model states that the conducting path generated in the early stage requires a larger area than that generated in the last stage, which results in a larger decrease in the capacitance.

Electrical Characteristics of RRAM with HfO2 Annealing Temperatures and Thickness (HfO2 열처리 온도 및 두께에 따른 RRAM의 전기적 특성)

  • Choi, Jin-Hyung;Yu, Chong Gun;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.663-669
    • /
    • 2014
  • The electrical characteristics of RRAM with different annealing temperature and thickness have been measured and discussed. The devices with Pt/Ti top electrode of 150nm, Pt bottom electrode of 150nm, $HfO_2$ oxide thickness of 45nm and 70nm have been fabricated. The fabricated device were classified by 3 different kinds according to the annealing temperature, such as non-annealed, annealed at $500^{\circ}C$ and annealed at $850^{\circ}C$. The set and reset voltages and the variation of resistance with temperatures have been measured as electrical properties. From the measurement, it was found that the set voltages were decreased and the reset voltage were increased slightly, and thus the sensing window was decreased with increasing of measurement temperatures. It was remarkable that the device annealed at $850^{\circ}C$ showed the best performances. Although the device with thickness of 45nm showed better performances in the point of the sensing window, the resistance of 45nm devices was large relatively in the low resistive state. It can be expected to enhance the device performances with ultra thin RRAM if the defect generation could be reduced at the $HfO_2$ deposition process.

Characterization of Silver Saturated-Ge45Te55 Solid Electrolyte Films Incorporated by Nitrogen for Programmable Metallization Cell Memory Device

  • Lee, Soo-Jin;Yoon, Soon-Gil;Yoon, Sung-Min;Yu, Byoung-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The crystallization temperature in GeTe solid electrolyte films was improved by in situ-nitrogen doping by rf magnetron co-sputtering technique at room temperature. The crystallization temperature of $250\;^{\circ}C$ in electrolyte films without nitrogen doping increased by approximately $300\;^{\circ}C$, $350\;^{\circ}C$, and above $400\;^{\circ}C$ in films deposited with nitrogen/argon flow ratios of 10, 20, and 30 %, respectively. A PMC memory device with $Ge_{45}Te_{55}$ solid electrolytes deposited with nitrogen/argon flow ratios of 20 % shows reproducible memory switching characteristics based on resistive switching at threshold voltage of 1.2 V with high $R_{off}/R_{on}$ ratios. Nitrogen doping into the silver saturated GeTe electrolyte films improves the crystallization temperature of electrolyte films and does not appear to have a negative impact on the switching characteristics of PMC memory devices.

Field-induced Resistive Switching in Ge-Se Based ReRAM

  • Lee, Gyu-Jin;Eom, Jun-Gyeong;Jeong, Ji-Su;Jang, Hye-Jeong;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.342-342
    • /
    • 2012
  • Resistance-change Random Access Memory (ReRAM), which utilizes electrochemical control of nanoscale quantities of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this study, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We measured the I-V characteristics by field-effect of the device. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

The Bending and Twisting Analysis of SMA/Composite Beams (SMA 선이 삽입된 복합재 보의 굽힘 및 비틀림 해석)

  • Park, Bum-Sik;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.151-154
    • /
    • 2001
  • Shape memory alloy (SMA) has demonstrated its potentials for various smart structure applications. SMA wires undergo a reversible phase transformation from martensite to austenite as temperature increases. This transformation leads to shape recovery and associated recovery strains. If SMA actuators are embedded off the neutral surface and are oriented in arbitrary angles with respect to a beam axis, then the beam bends and twists due to the coupling effects of recovery strains activated. In this study, the bending and twisting of a SMA/Composite beam were controlled by both electric resistive heating and passive elastic tailoring. 3-dimensional finite element formulations were derived and validated to analyze the responses of the SMA/Composite beam. Numerical results show that the shape of the SMA/Composite beam can be controlled by judicious choices of control temperatures, SMA angles, and elastic tailoring.

  • PDF

A CMOS Macro-Model for MRAM cell based on 2T2R Structure (2-Transistor와 2-Resister 구조의 MRAM cell을 위한 CMOS Macro-Model)

  • 조충현;고주현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.863-866
    • /
    • 2003
  • Recently, there has been growing interests in the magneto-resistive random access memory (MRAM) because of its great potential as a future nonvolatile memory. In this paper, a CMOS macro-model for MRAM cell based on a twin cell structure is proposed. The READ and WRITE operations of the MTJ cell can be emulated by adopting data latch and switch blocks. The behavior of the circuit is confirmed by HSPICE simulations in a 0.35-${\mu}{\textrm}{m}$ CMOS process. We expect the macro model can be utilized to develope the core architecture and the peripheral circuitry. It can also be used for the characterization and the direction of the real MTJ cells.

  • PDF

Interfacial Magnetic Anisotropy of Co90Zr10 on Pt Layer

  • Gil, Jun-Pyo;Seo, Dong-Ik;Bae, Gi-Yeol;Park, Wan-Jun;Choe, Won-Jun;No, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.2-356.2
    • /
    • 2014
  • Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (Ku) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (Ki) as the directly related parameters to switching and thermal stability, are estimated as $1.64erg/cm^2$ from CoZr/Pt multilayered system.

  • PDF

Field-induced Resistive Switching in Ge25Se75 Based ReRAM

  • Kim, Jang-Han;Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.413-414
    • /
    • 2012
  • Programmable Metallization Cell (PMC) memory, which utilizes electrochemical control of nanoscale quantities of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this study, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We measured the I-V characteristics by field-effect of the device. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF