• Title/Summary/Keyword: Resistant bacteria

Search Result 960, Processing Time 0.023 seconds

A Case of Mandible Osteomyelitis Mimicking Recurrent Tongue Cancer (재발성 설암으로 오인된 하악골 골수염 1예)

  • Park, Sangheon;Jung, Kwangjin;Park, Min Woo;Jung, Kwang-Yoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.29 no.2
    • /
    • pp.65-67
    • /
    • 2013
  • Osteomyelitis is an infection of bone or bone marrow, caused by pyogenic bacteria or mycobacterium. Osteomyelitis can be acute or chronic, inflammatory process of the bone and its structures. Chronic osteomyelitis will result in variable sclerosis and deformity of the affected bone. With an infection of the bone, the subsequent inflammatory response will elevate this overlying periosteum, leading to a loss of the nourishing vasculature, vascular thrombosis, and bone necrosis, resulting occasionally in formation of sequestra. These become areas that are more resistant to systemic antibiotic therapy due to lack of the normal Havesian canals that are blocked by scar tissue. At this aspect, not only systemic antibiotic therapy, but also surgical debridement maybe required to remove the affected bone and prevent disease propagation to adjacent areas. We experienced a patient who diagnosed tongue cancer and underwent wide partial glossectomy few years before, with an ulcerative lesion around right retromolar trigon. We diagnosed cancer recurrence because PET indicated hot uptake on mandible which was nearby previous tongue tumor site. The patient received hemiglossectomy via paramedian mandibulotomy, partial mandibulectomy and fibula osteocutaneous free flap reconstruction. But final diagnosis was mandible osteomyelitis on pathology report. Here, we present the case with a review of the related literatures.

Antifungal Mechanism and Properties of Antibiotic Substances produced by Bacillus subtilis YB-70 as a Biological Control Agent

  • Kim, Yong-Su;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 1994
  • Antibiotic substances were produced by Bacillus subtilis YB-70, a potential biocontrol agent found to suppress root-rot of eggplant (Solanum melonggena L) caused by Fusarium solani, in a dextrose glutamate medium and isolated by isoelectric precipitation. Partial purification was performed by column chromatography on silica gel with two solvent systems: chloroform-methanol and methanol-chloroform-water as eluting solvents, This active fraction YBS-1 s contained antifungal activity were soluble in ethanol, methanol, and water, but were not soluble in other solvents including acetone, butanol, ethyl ether, dimethylformamide, propanol, and etc. High performance liquid chromatography and thin layer chromatographic separation of YBS-1s showed that they have been composed of three biological active bands that were named YBS-1A, -1B, and -1C. The substances were stable to heat and resistant to protease. YBS-1s were active against a wide range of plant pathogenic fungi but did not inhibit the growth of bacteria and yeasts. They were not only fungicidal but also fungistatic against chlamydospores of F. solani. The $ED_{50}$ values for the chlamydospore germination and the germ-tube growth of F. solani were $O.725\mu\textrm{m}/ml\;and\;O.562\mu\textrm{m}/ml$, respectively. Microscopic observations proved the substances restricted the growth of phytopathogenic fungus F. solani by spore burst followed by dissolving of its germ-tube, and caused abnormal hyphal swelling after application to chlamydospores or growing hyphae. Cultural filtrate of B; subtilis YB-70 also suppressed the development of root-rot of eggplant in pot tests.

  • PDF

Anti-Helicobacter pylori Properties of GutGardTM

  • Kim, Jae Min;Zheng, Hong Mei;Lee, Boo Yong;Lee, Woon Kyu;Lee, Don Haeng
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • Presence of Helicobacter pylori is associated with an increased risk of developing upper gastrointestinal tract diseases. Antibiotic therapy and a combination of two or three drugs have been widely used to eradicate H. pylori infections. Due to antibiotic resistant drugs, new drug resources are needed such as plants which contain antibacterial compounds. The aim of this study was to investigate the ability of GutGard$^{TM}$ to inhibit H. pylori growth both in Mongolian gerbils and C57BL/6 mouse models. Male Mongolian gerbils were infected with the bacteria by intragastric inoculation ($2{\times}10^9$ CFU/gerbil) 3 times over 5 days and then orally treated once daily 6 times/week for 8 weeks with 15, 30 and 60 mg/kg GutGard$^{TM}$. After the final administration, biopsy samples of the gastric mucosa were assayed for bacterial identification via urease, catalase and ELISA assays as well as immunohistochemistry (IHC). In the Mongolian gerbil model, IHC and ELISA assays revealed that GutGard$^{TM}$ inhibited H. pylori colonization in gastric mucosa in a dose dependent manner. The anti-H. pylori effects of GutGard$^{TM}$ in H. pylori-infected C57BL/6 mice were also examined. We found that treatment with 25 mg/kg GutGard$^{TM}$ significantly reduced H. pylori colonization in mice gastric mucosa. Our results suggest that GutGard$^{TM}$ may be useful as an agent to prevent H. pylori infection.

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.

Antimicrobial resistance of Campylobater spp. from duck feces in northern area of the Gyeongnam province, Korea (경남 북부지역 오리 분변에서 분리된 Campylobacter spp.의 항생제 내성)

  • Kim, Hyeong-Su;Seo, Deok-Jin;Seong, Min-Ho;Han, Kwon-Seek;Park, Jung-Yong;Jeong, Myeong-Ho;Park, Dong-Yeop;Park, Dong-Ju;Koh, Phil-Ok
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.101-105
    • /
    • 2017
  • The purpose of this study was to investigate prevalence and antimicrobial resistance patterns of Campylobacter spp. from duck feces in northern area of the Gyeongnam province, Korea. Samples of 121 duck feces were taken from April to December 2014 for this survey. Samples were examined by bacteria isolation and reverse transcriptase-polymerase chain reaction assay for detection of Campylobacter spp. Campylobacter were isolated in 37 samples (30.6%). Among these samples, C. jejuni and C. coli were isolated in 35 samples and 2 samples, respectively. Minimum inhibitory concentration (MIC) test is performed to investigate antimicrobial resistance patterns of Campylobacter spp. C. jejuni were resistant to ciprofloxacin (85.7%), nalidixic acid(82.9%), tetracycline (77.1%), gentamicin (57.1%), azithromycin (40.0%), clindamycin (34.3%), erythromycin (22.9%), and florfenicol (8.6%). These data support a database of pollution and antimicrobial resistance of Campylobacter spp. from duck feces and provide a basic information of reducing the secondary damage of antibiotic misuse.

Influence of Essential Oil in 'Shiranuhi' Immature Fruit on Antioxidant and Antimicrobial Activities (부지화 미숙과 에센셜 오일의 항산화 및 항균 활성 효과)

  • Kim, Sang Suk;Hyun, Ju Mi;Kim, Kwang Sik;Park, Kyung Jin;Park, Suk Man;Choi, Young Hun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.493-497
    • /
    • 2013
  • This study was designed to analyze the chemical composition of essential oil in 'Shiranuhi' immature fruit and to test their biological activities. 'Shiranuhi' immature essential oils (SIEO) were obtained by steam distillation from fruits collected from Jeju Island and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Fourteen components were identified in the essential oil. Limonene (75.21%) and terpineol (8.68%) were the major components in SIEO. Since acne vulgaris is the combined result of a bacterial infection and the inflammatory response to that infection, we examined whether SIEO possessed antibacterial against skin pathogens. As a result, SIEO showed excellent antibacterial activities against drug-susceptible and -resistant Propionibacterium acnes and Staphylococcus epidermidis, which are acne-causing bacteria. In this study, SIEO was examined on DPPH radical scavenging activities, which showed moderate antioxidant activity ($SC_{50}$, $15.36{\mu}L/mL$). In order to determined whether SIEO can be safely applied to human skin, the cytotoxicity effects of SIEO were determined by colorimetric MTT assays in normal human fibroblasts and keratinocyte HaCaT cells. They exhibited low cytotoxicity at $0.5{\mu}L/mL$ in both celllines. Based on these results, we suggest the possibility that essential oil of 'Shiranuhi' maybe considered as an antibacterial and antioxidant agent.

Biological Control of Plant Pathogen by Pmdornonas sp. (Pseudomondas sp.에 의한 채소병원균의 생물학적 억제)

  • 김교창;김홍수;도대홍;조제민
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.263-270
    • /
    • 1992
  • For the selection of powerful antagonistic bacterium for biological control of soil borne Eminia carotovora subsp. carotovora causing rot of vegetable, excellent strains (S4, S14, 565) were selected from 1,196 strains of bacteria which were isolated from rhizosphere in vegetable root rot-suppresive soil. Strains were identified to be Pseudomonas species with Api 20NE kit. Antagonistic substance was produced in 523 synthetic broth medium at pH 7~8 and $30^{\circ}C$ during 3 days culture. The substance was stable in the pH range of 6 to 9. When the basal medium was supplemented with mannitol and sorbitol as carbon source and calcium chloride as metal salt, the production of the inhibitory substance was increased. The inhibitory acitivity was increased by the addition of fertilizer in soil. The isolated strains were resistant to the agricultural chemical such as benomyl and fosethyl-Al-folpet, and the antibiotics such as penicillin and lincomycin. We had found that Pseudomonas sp. S14 strain had a single plasmid. After treated with acridin orange for curing, we confirmed the existence of antagonistic gene in the chromosomal DNA.

  • PDF

Isolation and Identification of the Crude Oil-degrading Psychrotrophic Bacterium and the Characteristics of OCT Plasmid (저온성 원유분해 세균의 분리동정 및 OCT 프라스미드 특성)

  • 김상진;윤희정
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 1993
  • Psychrotrophic bacterial strains utilizing crude oil as their sole carbon and energy sources were isolated from Antarctic soil and sea sediments. One of the strains named AI-I showed the hightest activity for emulsification of crude oil and the best growth. This strain was identified as Acinetobacter calcoaceticus. A. calcoaceticus AI-I strain contains a plasmid (OCT plasmid) which was related to the utilization of alkane compounds. The molecular weight of this plasmid was estimated to be about 110 Md by agarose gel electrophoresis. The cured strain of A. calcoaceticus AI-I strain (OCT ) was not able to utilize normal hydrocarbon compounds ($C_6C_{17}$) as carbon and energy sources. A. ca/coaceticus AI-1 was resistant to ampicillin and sensitive to streptomycin, kanamycin, chloramphenicol, tetracycline. The results suggested that this strain carries a plasmid (OCT) responsible for oil utilization which is quite stable and might be concerned with antibiotics resistancy.

  • PDF

Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

  • Yu, Ji-Gang;Lim, Jeong-A;Song, Yu-Rim;Heu, Sunggi;Kim, Gyoung Hee;Koh, Young Jin;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50℃, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema;Harja, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.935-941
    • /
    • 2010
  • The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.