• Title/Summary/Keyword: Resistant bacteria

Search Result 967, Processing Time 0.034 seconds

Characterization and Selection of Lactic Acid Bacteria Producing ${\beta}-Galactosidase$ (${\beta}-Galactosidase$ 생산 유산균 선별 및 특성 조사)

  • Lee, Young-Ki;Choi, Susanna;Park, Young-Il;Park, Chan-Sun;Yoon, Byung-Dae;Hwang, Yun-Sik;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.216-222
    • /
    • 2006
  • This study was carried out to select the lactic acid bacteria producing ${\beta}-galactosidase$ (lactase) and investigate the properties of the ${\beta}-galactosidase$. About 100 strains of lactic acid bacteria showing blue colony on the MRS agar medium containing X-gal were isolated from several kinds of Kimchi. Among them, 2 strains were selected as potential ${\beta}-galactosidase$ producers. The selected strains, ET-1 and LA-12, were identified as Lactobacillus fermentum and L. acidophilus, respectively by the analysis of 16S rDNA sequences. They showed relatively high ${\beta}-galactosidase$ activity and cellular viability. Their ${\beta}-galactosidase$ showed the highest activity at $55^{\circ}C$. And the optimum pHs of the enzymes produced by ET-1 and LA-12 were pH 5.5 and pH 7.0, respectively. They were also highly resistant to artificial gastric juice and bile. Two selected strains showed little change of viable cell number for 3 hr incubation in artificial gastric juice, and maintained the viable cell number at $10^8CFU/ml$ for 24 hr in 0.3% oxgall after incubation for 2 hours in artificial gastric juice. Based on these results, ET-1 and LA-12 are expected to be applied in dairy industry.

Characterization and Antimicrobial Activity of Lactic Acid Bacteria Isolated from Vaginas of Women of Childbearing Age (가임기 여성의 질에서 분리한 젖산 세균인 Lactobacillus plantarum UK-3의 특성 및 항균활성)

  • Ahn, Hye-Ran;So, Jae-Seong;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.308-315
    • /
    • 2011
  • The purpose of this work was to examine the antimicrobial activity derived from the lactic acid bacterium, UK-3 isolated from the vaginas of women of childbearing age. Various physiological and biochemical properties of this strain were characterized. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was designated as Lactobacillus plantarum UK-3, and registered in GenBank as [JK266589]. Growth rate, production of organic acids (e.g., lactic acid and acetic acid), and pH during growth were monitored. The maximum concentrations of lactic acid and acetic acid were approximately 684.11 mM and 174.26 mM, respectively, and pH changed from 7.0 to 3.7 after 72 h of incubation. High performance liquid chromatography was used to confirm lactic acid and acetic acid production. Significant antimicrobial activity of the concentrated supernatant was demonstrated against various Gram-positive (e.g., Staphylococcus aureus, Staphylococcus epidermidis, Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Neisseria species., Listeria monocytogenes), Gram-negative bacteria (e.g., Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis), and yeast (e.g., Candida albicans) by the plate diffusion method. As a result, the concentrated L. plantarum UK-3 cultures had lower acidity and inhibited the growth of all microorganisms tested, whereas the growth of L. acidophilus was not affected.

Microbiological Quality and Antibiotic Susceptibility of E. coli Isolated from Agricultural Water in Gyeonggi and Gangwon Provinces (경기, 강원 지역 농업용수의 미생물학적 특성 및 농업용수 분리 대장균의 항생제 내성)

  • Hwang, Injun;Park, Daesoo;Chae, Hyobeen;Kim, Eunsun;Yoon, Jae-Hyun;Rajalingam, Nagendran;Choi, Songyi;Kim, Se-Ri
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • BACKGROUND: Irrigation water is known to be one of the major sources of bacterial contamination in agricultural products. In addition, anti-microbial resistance (AMR) bacteria in food products possess serious threat to humans. This study was aimed at investigating the prevalence of foodborne bacteria in irrigation water and evaluating their anti-microbial susceptibility. METHODS AND RESULTS: Surface water (n = 66 sites) and groundwater (n = 40 sites) samples were collected from the Gyeongi and Gangwon provinces of South Korea during April, July, and October 2019. To evaluate the safety of water, fecal indicators (Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were examined. E. coli isolates from water were further tested for antimicrobial susceptibility using VITEK2 system. Overall, detection rate of foodborne pathogens in July was highest among three months. The prevalence of pathogenic E. coli (24%), Salmonella (3%), and L. monocytogenes (3%) was higher in surface water, while only one ground water site was contained with pathogenic E. coli (2.5%). Of the 343 E. coli isolates, 22.7% isolates were resistant to one or more antimicrobials (ampicillin (18.7%), trimethoprim-sulfamethoxazole (7.0%), and ciprofloxacin (6.7%)). CONCLUSION: To enhance the safety of agricultural products, it is necessary to frequently monitor the microbial quality of water.

Biochemical Properties and Application of Bacteriocins Derived from Genus Bacillus (Bacillus속 세균 유래 박테리오신의 특성과 응용)

  • Ji-Young Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Bacteriocins are antimicrobial peptides synthesized on ribosomes, produced by bacteria, that inhibit the growth of similar or closely related bacterial strains. Since the discovery of nisin, many bacteriocins with unique structures and various modes of antibacterial activity have been described, and genes encoding production, secretion, and immunity have been reported. Nisin is one of the bacteriocins applied in cheese, liquid eggs, sauces and canned foods. Many of the bacteriocins of the genus Bacillus belong to lantibiotics, which are modified peptides after translation. Other genus Bacillus also produce many non-lantibiotic bacteriocins. Bacteriocins of the genus Bacillus are sometimes becoming more important because of their broader antibacterial spectrum. Bacteriocins are considered attractive compounds in the food and pharmaceutical industries to prevent food spoilage and growth of pathogenic bacteria. Bacteriocins can be used as biological preservatives in a variety of ways in the food system. Biopreservation refers to extending shelf life and improving safety of foods using microorganisms and/or their metabolites. The demand for new antimicrobial compounds has generated great interest in new technologies that can improve food microbiological safety. Applications of bacteriocins are expanding from food to human health. Today, many researchers are shifting their interest in bacteriocins from food preservation to the treatment of bacteria that cause infections and antibiotic-resistant diseases. This exciting new era in bacteriocin research will undoubtedly lead to new inventions and new applications. In this review, we summarize the various properties and applications of bacteriocins produced by the genus Bacillus.

A STUDY ON THE CELL PROPERTY OF XYLITOL-RESISTANT STREPTOCOCCUS MUTANS AND XYLITOL-SENSITIVE STREPTOCOCCUS MUTANS (Xylitol-resistant Streptococcus mutans와 xylitol-sensitive Streptococcus mutans의 세포 성질에 관한 비교연구)

  • Lee, Hong-Mo;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.554-562
    • /
    • 2003
  • Xylitol has been used as sugar substitute to prevent dental caries. It is not fermented by most dental plaque bacteria and interferes with the growth of mutans streptococci. Therefore the production of acidic metabolites and the growth of mutans streptococci are inhibited. S. mutans strains which are inhibited to grow under the presence of xylitol are referred as xylitol-sensitive ($X^S$) strains. However, experimental and clinical studies have shown that there were mutated groups of S. mutans strains that are not affected by xylitol. They are referred as xylitol-resistant($X^R$) strains. The aim of the present study was to investigate that emergence of $X^R$ strain would effect on the anticariogenecity of xylitol by comparing the growth rate, the extracellular pH, hydroxyapatite adhesion and the agglutination of the $X^R/X^S$ strains. Overall we came out with following results : 1. No difference in the growth rate and the extracellular pH was found between the $X^S$ strain and the $X^R$ strain. 2. No difference in adhesion to hydroxyapatite surface was found between the $X^R$ strain and the $X^S$ strain (p>0.05) and adhesion of the $X^S$ strain was greater than that of $X^R$ strain in the sucrose-dependent adhesion to hydroxyapatite (p<0.05). 3. The $X^R$ strain was agglutinated in the lower concentration of saliva than that of $X^S$ strains.

  • PDF

Isolation and Characterization of a Marine Bacterium, Pseudomonas sp. YJ-1 with Anti-Methicillin Resistant Staphylococcus aureus Activity (항 Methicillin Resistant Staphylococcus aureus 활성을 가지는 해양미생물 Pseudomonas sp. YJ-1의 분리와 특성)

  • Woo, Ye-Ju;Jeong, Seong-Yun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.694-705
    • /
    • 2017
  • The aim of this study was to isolate and identify marine bacterium with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and to purify the anti-MRSA compound, as well as to determine its activity and synergistic effects. Among the marine bacteria isolated in this study, the YJ-1 isolate had the strongest anti-MRSA activity. The YJ-1 isolate was identified on the basis of its biochemical characteristics and an analysis of 16S rRNA gene sequences. The YJ-1 isolate showed over 99.2% homology with Pseudomonas stutzeri, and was designated as a Pseudomonas sp. YJ-1. The optimal culture conditions were $25^{\circ}C$ and initial pH 7.0. For the purification of the anti-MRSA compounds, the YJ-1 was cultured in Pa PES-II medium, and the culture filtrates were extracted by ethyl acetate, hexane, and 80% MeOH. The 80% MeOH fraction was separated by a $C_{18}$ ODS column, silica gel chromatography and a reverse phase HPLC, to yield three anti-MRSA agents, the MR1, MR2, and MR3 compounds. When the MR1 compound of $250{\mu}g\;mL^{-1}$ concentration was applied to the MRSA cells, over 95% of bacterial cells was killed within 48 hr. Compared with vancomycin and ampicillin, the MR1 compound showed significant anti-MRSA activity. In addition, the anti-MRSA activity was increased by dose and time dependent manners. Furthermore, the combination of an MR1 compound with vancomycin produced a more rapid decrease in the MRSA cells than did the MR1 compound alone. Taken together, our results suggest that the Pseudomonas sp. YJ-1 and its anti-MRSA compounds could be employed as a natural antibacterial agent in MRSA infections.

Occurrence and Distribution of Selected Veterinary Antibiotics in Soils, Sediments and Water Adjacent to a Cattle Manure Composting Facility in Korea (국내 우분 퇴비화 시설 인근 농경지 및 수계 중 Tetracycline 및 Sulfonamide 계열 항생물질의 분포특성)

  • Lim, Jung-Eun;Kim, Sung-Chul;Lee, Hyeon-Yong;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.845-854
    • /
    • 2009
  • There has been increased concern regarding the release of antibiotics to different environmental compartments due to the possibility of the development of antibiotic resistant bacteria. However, limited information is available regarding the occurrence, fate, and transport of antibiotics in Korea in both the aqueous phase and in solid phases such as sediment and soil. Therefore, this study was conducted to monitor the concentration of released antibiotics in surface water, sediment, and soil adjacent to a cattle manure composting facility in Korea. Specifically, the following six antibiotics were monitored: tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), sulfamethazine (SMT), sulfamethoxazole (SMX), and sulfathiazole (STZ). To extract and quantify the antibiotics from different environmental compartments, solid phase extraction (SPE) and high performance liquid chromatography mass spectrometry (HPLC/MS) techniques were adopted. The concentration of the six antibiotics ranged from below the detection limit (BDL) to 0.71 ${\mu}g$/L in surface water, from BDL to 27.61 ${\mu}g$/L in sediment, and from 0.12 to 157.33 ${\mu}g$/L in soil. In addition, higher concentrations of antibiotics were observed in surface water and sediment at locations closer to the composting facility indicating that composting is the source of the antibiotics found in the environment. Furthermore, higher concentrations of antibiotics were observed in the solid phase (sediment and soil) than the aqueous phase. These findings indicate that the possibility of antibiotic resistant bacteria is increased because such bacteria are more stable in the solid phase. Overall, longterm monitoring of the aqueous phase and solid phase is necessary to gain a better understanding of the impact of antibiotics from source on the environment in Korea.

Distribution of foodborne pathogens in red pepper and environment (고추와 재배환경의 식품매개 병원균 분포)

  • Jung, Jieun;Seo, Seung-Mi;Yang, SuIn;Jin, Hyeon-Suk;Jung, Kyu-Seok;Roh, Eunjung;Jeong, Myeong-In;Ryu, Jae-Gee;Ryu, Kyoung-Yul;Oh, Kwang Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.799-808
    • /
    • 2021
  • This study was performed to investigate the extent of microbial contamination, the presence of enterotoxin genes, and the antibiotic susceptibility of Bacillus cereus in 58 red pepper plants and 43 environmental samples (soil, irrigation water, and gloves) associated with the plant cultivation. The detected counts of total aerobic bacteria, coliform bacteria, Escherichia coli, Bacillus cereus, and Staphylococcus aureus were lower in these samples, as compared to the regulations of standards for foods; moreover, pathogens, such as E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp., were not detected. Genes encoding hemolysin BL enterotoxins (hblA, hblC, and hblD) as well as non-hemolytic enterotoxins (nheA, nheB, and nheC) were detected in 23 B. cereus specimens that were isolated from the test samples and had β-hemolytic activity. Interestingly, B. cereus is resistant to β-lactam and susceptible to non-β-lactam antibiotics. However, in this case, the isolated B. cereus specimens exhibited a shift from resistant to intermediate in response to cefotaxime and from susceptible to intermediate in case of rifampin, trimethoprim-sulfamethoxazole, vancomycin, clindamycin, and erythromycin. Therefore, the levels of B. cereus should be monitored to detect changes in antibiotic susceptibility and guarantee their safety.

Microbiological Studies on Feed Supplements (사료첨가제(飼料添加劑)의 미생물오염(微生物汚染)에 관(關)하여)

  • Park, Su Kyung;Tak, Ryun Bin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.132-140
    • /
    • 1986
  • Eighty one products from 36 kinds of vitamin and mineral feed supplement collected during August, 1984 to February, 1985 were examined for microbiological contamination. In addition, 83 strains of coliform isolated from the samples were tested for the resistance to 8 kinds of antimicrobial drugs and distribution of R plasmid. General bacteria were detected in all of samples tested. Bacterial population was varied from less than 10 per gram of the sample to 1,400,000 per gram and 34 (42%) of 81 samples were contaminated with 100 to 1,000 cells per gram. Coliform isolation, which was more frequent in samples with larger number of general bacteria, was possible in 14 (17.3%) out of 81 samples tested and 6 (33.3%) out of 18 companies were coliform positive in their products. Forty one (49.4%) out of 83 coliform isolates were fecal coliform. The frequency of resistant strains was the highest to sulfadimethoxine (Sa) with 92.8% and followed by streptomycin (Sm, 67.5%), tetracycline (Tc, 50.6%), kanamycin (Km, 26.5%), chloramphenicol (Cm, 18.1%) and ampicillin (Am, 15.7%). No strain was resistant to nalidixic acid (Na) and gentamicin (Gm). The resistance frequency of fecal coliform strains were higher compare to non-fecal coliform strains. There were minimum inhibitory concentration (MIC) of $3,200{\mu}g/m{\ell}$ or higher in 7 strains to Am, 3 to Sm and 3 to Km, and 70 strains had MIC of $1,600{\mu}g/m{\ell}$ of higher to Sa while Tc had MICs from $1.6{\mu}g/m{\ell}$ to $400{\mu}g/m{\ell}$. All strains had MICs of $6.3{\mu}g/m{\ell}$ of lower to Na and $3.1{\mu}g/m{\ell}$ of lower to Gm. Seventy nine (95.2%) of 83 strains were resistant to one or more drugs tested. The most frequent resistance patterns were SaSm (14.5%) and followed by SaSmTc(12%), SaSmTcKm(8.4%) SaTc (8.4%) and SaSmKm (7.2%) ; total 19 different patterns were noted. Thirty two (40.5%) of 79 resistant strains were transferred all of a part of their resistance to Escherichia coli ML 1410. The frequency of transferable resistance was high in Am (100%) and Cm (80%) while low in Tc (38.1%), Sa (18.2%), Sm (17.9%) and Km (4.5%).

  • PDF

Characterization of a heat-resistant antimicrobial peptide secreted by Bacillus subtilis A405 (Bacillus subtilis A405 균주가 생성하는 내열성 항균 peptide의 특성 검정)

  • Koo, Bon-Sung;Lee, Seung-Bum;Yoon, Sang-Hong;Song, Gae-Kyung;Chung, Dae-Sung;Byun, Myung-Ok;Ryu, Jin-Chang
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.28-35
    • /
    • 1998
  • An antimicrobial peptide producing bacterium, Bacillus subtilis A405, was screened and identified among 700 of antagonistic bacteria. The heat-resistant antimicrobial peptide, AMP-405, was purified from the broth culture of B. subtilis A405 through $20{\sim}40%$ ammonium sulfate precipitation and ultrafiltration. The AMP-405 exhibited strong antimicrobial activities against Botrytis cinerea, Cercospora sp., Fusarium oxysporum, Penicillium digitatum, Celletotrichum gloeosporioides, Rhizoctonia solani, Pythium ultimum, Pyricularia oryzae, Escherichia coli, Pseudomonas spp. and Candida albicans. The molecular weight of the peptide was about 3.0 kDa determined by SDS-PAGE, Native-PAGE and Tris-Tricine gradient electrophoresis, and composed of 9 kinds of amino acid such as aspartic acid, glycine, serine, glutamine, valine, leucine, isoleucine, proline, tyrocine. To determine the efficiency of AMP-405 as a potential maintenance of fruits freshness, cherry tomato was srored at $25^{\circ}C$ for 2 weeks after treatment with $50{\mu}g/ml$ of AMP-405 and $10^{5}$ spores/ml of Botrytis cinerea simultaneously. Treatment with AMP-405 resulted in significantly less infection by Botrytis cinerea, than the treatment with tap water as a control.

  • PDF