• Title/Summary/Keyword: Resistance to Vertical Load

Search Result 153, Processing Time 0.033 seconds

Effects of Resistance Training on BMD and Bone Metabolism Related Markers in Aging Rats (저항성 훈련이 노화흰쥐의 골밀도 및 골대사 관련 지표에 미치는 영향)

  • Kang, Hyung-Sook;Kim, Sang-Bae;Yoon, Jin-Hwan
    • 한국노년학
    • /
    • v.31 no.2
    • /
    • pp.303-315
    • /
    • 2011
  • The purpose of this study was to investigate effect of resistance training on BMD and bone metabolism related markers in aging rats. Thirty male Spraugue-Daweley rats were divided into sedentary (CON; n=10 ) non-load resistance trained(NLRTG; n=10), and load resistance trained(LRTG; n=10) groups at the age of 64 weeks. The rats in the resistance training groups((NLRTG and LRTG) performed the tower climbing exercise 4 times a week. The LRTG groups were conditioned to climb a vertical ladder with weights appended to their tail 4 days/wk for 12 wks. After 12 weeks of exercise, serum osteocalcin, bone mineral density (BMD), breaking force, ash, Ca, and P in the femur were measured. After training, serum osteocalcin (OC) was significantly (p < 0.05) higher in both LRTG and NLRTG when compared to Control. Right femur BMD was significantly (p < 0.05) greater for LRTG when compared to both NLRTG and Control with no significant difference between NLRTG and Conrtol. The breaking force of femur was significantly (p < 0.05) greater for LRTG and NLRTG when compared to Control. The Ash, Ca, content of femur were significantly increased in resistance training groups than control group. These results suggest that the increase in bone mineral density induced by resistance training is mediated by changes in bone microarchitecture as well as training intensity and osteocalcin.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Evaluation of the Optimal Vertical Stiffness of a Fastener Along a High-speed Ballast Track (고속철도 자갈궤도 체결구 최적 수직강성 평가)

  • Yang, Sin-Choo;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

ML-based Allowable Axial Loading Estimation of Existing RC Building Structures (기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법)

  • Hwang, Heejin;Oh, Keunyeong;Kang, Jaedo;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF