• 제목/요약/키워드: Resistance of ballast

검색결과 78건 처리시간 0.025초

철도궤도 하부구조물 평가를 위한 타격식 관입 롯드가 체결된 콘 관입기의 개발 및 적용 (Development and Application of Cone Penetrometer with Impact Penetration Rod for Evaluation of Track Substructure)

  • 홍원택;변용훈;김상엽;최찬용;이종섭
    • 한국지반환경공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.45-52
    • /
    • 2015
  • 철도궤도 하부구조물의 유지, 보수 및 과다설계에 따른 비용을 최소화하기 위하여 궤도 하부구조물의 강도 및 강성특성에 대한 정확한 평가는 필수적이다. 본 연구에서는 궤도 하부구조물의 상태를 평가하기 위한 콘 관입기(CPI)를 개발하였으며, 적용성 검증을 위하여 실내실험과 현장실험을 수행하였다. CPI를 이용한 철도궤도 하부구조물 평가의 결과로서 획득되는 결과는 동적 콘관입지수(DCPI), 원추관입저항력($q_c$), 마찰저항력($f_s$) 및 마찰력비(Fr)이다. 실험결과, 실내실험의 경우 도상자갈층에서 획득한 동적 콘 관입지수와 상부노반층에서 획득한 원추관입저항력, 마찰저항력 및 마찰비는 조성한 시료에 대하여 신뢰할 만한 결과를 보였다. 현장실험의 경우 도상자갈층의 경계면을 명확히 구분해 내었으며, 상부노반층의 불연속면을 감지하였다. 본 연구에서 개발된 CPI는 동적 관입과 정적 관입 방법을 이용함으로써 궤도 하부구조물 평가에 유용한 방법이 될 것이라 기대된다.

Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성 (Lab Weldability of Pure Titanium by Nd:YAG Laser)

  • 김종도;곽명섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

디스크형 압전변압기의 전극비에 따른 전기적 특성 (A Electrical Characteristics of Disk-type Piezotransformer with Electrode Ratio of Driving and Generating Part)

  • 이종필;채홍인;정수현;홍진웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.458-463
    • /
    • 2003
  • In order to develope piezoelectric transformer for the ballast of fluorescent lamp, a new shape and electrode pattern of piezoelectric transformer has been investigated in this work. The composition of piezoelectric ceramics was 0.95Pb(Zr$_{0.51}$Ti$_{0.49}$)O$_3$+0.03Pb(Mn$_{1}$3/Nb$_{2}$3/)O$_3$+0.02Pb(Sb$_{1}$2/Nb$_{1}$2/)O$_3$. The sample prepared by this composition system showed the characteristics which has about 1200 of relative dielecric constant, 1100 of the mechanical quality factor, 0.53 of the electromechanical coupling coefficient, 320 pC/N of the piezoelectric constant d$_{33}$, 0.3 % of the dissipation factor. Diameter and thickness of disk-type piezoelectric transformer was 45 mm and 4 mm, respectively. The driving and generating electrode with their gap of 1mm were fabricated on the top surface. But the common electrode was fabricated on the whole bottom surface. The electrode surface ratio of driving and generating part on the top surface ranges from 1.4:1 to 3:1. We investigated the electrical characteristics with the variation of the electrode surface ratio of driving and generating part in the range of load resistance of 100 $\Omega$~70 k$\Omega$. The set-up voltage ratio of this piezoelectric transformer increases with increasing both the electrode surface of driving part and the load resistance. The set-up voltage ratio at no load resistance was more than 60 times. On the other hand, the efficiency decreases with increasing the electrode surface of driving part. In the case of the electrode surface of both 1.4:1 and 2:1, maximum efficiency showed above 97 % at load resistance of 2 k$\Omega$. However, in the case of the electrode surface of 3:1, maximum efficiency showed about 94 % at load resistance of 3 k$\Omega$.>.>.>.

세일링요트 핀킬 형상별 저항특성 비교연구 (A Study on the Comparison of Resistance Performance for Shape of Fin Keel of Sailing Yacht)

  • 추경훈;심상목;박충환;진송한;권성훈
    • 한국항해항만학회지
    • /
    • 제30권5호
    • /
    • pp.375-379
    • /
    • 2006
  • 세일링요트의 추진시 횡류를 방지하기 위하여 선체 하부에 킬을 부착하게 되는데 이는 세일의 양력에 의한 횡흐름을 멈추게 하는 역할과 힐 모멘트를 없애고 복원력을 생기게 한다. 이는 안전성에 영향을 미치기 때문에 적절한 킬의 선택은 중요하다고 할 수 있다. 또한 킬 하부에 부가물의 부착은 발라스트 중량중심을 낮춤으로서 선체 복원력에 중요한 영향을 미치므로 킬에 대한 최적형상 도출은 매우 중요하다. 이에, 본 연구에서는 저항성능 향상을 위한 동일 침수표면적의 핀킬 하부 부가물에 따른 저항특성을 비교 실험하였다. 실험방법으로는 회류 수조를 이용하여 3가지 핀킬 하부 부가물 모형킬을 모형선에 부착하여 형상별 저항특성을 비교 분석하였다. 분석 결과에 따른 저항감소 최적 형상을 도출 하였다.

열저항 네트워크 모델을 이용한 LNG 화물창 Scale Effect 분석 (Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model)

  • 유화롱;김태훈;김창현;김민창;김명배;한용식;듀이;정경열;최병일;도규형
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.222-230
    • /
    • 2023
  • In the present work, the scale effect on the Boil-Off Rate (BOR) was investigated based on an analytical method to systematically evaluate the thermal performance of a Liquefied Natural Gas (LNG) Cargo Containment System (CCS). A two-dimensional thermal resistance network model was developed to accurately estimate the heat ingress into the CCS from the outside. The analysis was performed for the KC-1 LNG membrane tank under the IGC and USCG design conditions. The ballast compartment of both the LNG tank and cofferdam was divided into six sections and a thermal resistance network model was made for each section. To check the validity of the developed model, the analysis results were compared with those from existing literature. It was shown that the BOR values under the IGC and USCG design conditions were agreed well with previous numerical results with a maximum error of 1.03% and 0.60%, respectively. A SDR, the scale factor of the LNG CCS was introduced and the BOR, air temperature of the ballast compartment, and the surface temperature of the inner hull were obtained to examine the influence of the SDR on the thermal performance. Finally, a correlation for the BOR was proposed, which could be expressed as a simple formula inversely proportional to the SDR. The proposed correlation could be utilized for predicting the BOR of a full-scale LNG tank based on the BOR measurement data of lab-scale model tanks.

고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석 (Analysis of Rail Stress on Diversity of Railway Bridge Sustem)

  • 강재윤;김병석;곽종원;진원종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

교량과 분기기 상호작용에 관한 연구 (A Study of Interaction between Viaduct and Turnout)

  • 양신추;한상철;김인재
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.689-694
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of running safety and ride comfort of train, reduction of track maintenance working Track-Bridge interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force of rail and a rail expansion and contraction when turnout exist in succession on a CWR of bridge is developed.

궤도보수 작업 조건별 장대레일 축력변화에 관한 연구 (A study on the Longitudinal Force Variation of CWR according to the Condition of Track Maintenance)

  • 원용환;김관형;권순정;이승열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • This research presents the method to decide proper locations for destressing of CWR using a non-destructive equipments to measure the longitudinal force(installation temperature) in CWR. The effect and necessity of destressing were analyzed by estimating changes of longitudinal force. The installation temperature was measured to find changes of longitudinal force in high speed and conventional lines before and after destressing or track maintenance at the locations where destressing was planed or where change of longitudinal force was expected during track maintenance. Past destressing was carried out within qualitative decision criteria. This research proposes the quantitative criteria to decide the priority order of the destressing locations reasonably by considering the difference of air temperature and stress free temperature during the track maintenances, the grade of ballast resistance force recovering and the length of destressing, etc.

  • PDF

도상이 장대 레일의 선형 온도 좌굴에 미치는 영향 (Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR)

  • 강영종;임남형;신정렬;양재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

H형 침목에 관한 연구 (A Study on the H-typed Railway Sleeper)

  • 배현웅;배상원;김해곤;이진옥;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.680-683
    • /
    • 2010
  • The lateral stiffness of the track structure is very important mechanical property to prevent the track buckling and progress of misalignment. The increasing methods of the lateral stiffness of the track structure are the following; increases of the lateral ballast resistance, and increases of the lateral stiffness of the track panel. In order to increase the lateral stiffness of the tack panel, some of the sleepers resist together against the lateral movement can be the most economical and mechanical method. In this paper, H-typed sleeper developed to solve this problem is introduced and the mechanical advantages of this sleeper are investigated.

  • PDF