• Title/Summary/Keyword: Resistance mechanisms

Search Result 773, Processing Time 0.037 seconds

Characteristics on Corrosion Resistance of Medium High Carbon Low Alloy Steels using Plasma Nitriding Process (플라즈마 질화처리한 중, 고탄소저합금강의 내식성에 관한 연구)

  • 이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.702-711
    • /
    • 1998
  • The characteristics of corrosion resistance for the surface of medium high carbon steels and low alloy steels utilizing as manufacturing the machinery structures and machining tools and treating by plasma/ion nitriding process have been studied in terms of electrochemical polarization behav-iors including corrosion potential(Ecorr) anodic polarization trends and polarization resistance(Rp) The seven base materials showed a clear passivation behavior for the polarization tests in the ASTM standard solution 1N ${H_2){SO_4}$ Although the treated surface by plasma nitriding for the seven test materials showed a significant increase in hardness the treatment gave a detri-mental effect in corrosion resistance. The various characteristics including corrosion potential polarization curves microstructures corrosion current polarization resistance among non-treat-ed nitriding and/or soft-nitriding treated specimens have been investigated and some of the mechanisms discussed.

  • PDF

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities

  • Erion, Derek M.;Park, Hyun-Jun;Lee, Hui-Young
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.139-148
    • /
    • 2016
  • In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.

Insect Pest Resistance to Insecticides and Future Researches (해충의 살충제저항성과 금후대책)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.98-105
    • /
    • 1983
  • The rapid increase in cases of insect resistance to insecticides indicates that the contribution of present chemical control practices inevitably leads to exhaustion of available insecticide resources against key insect species. Now the problem of insecticide resistance exists worldwide among insects and mites affecting field crops and animals including human beings, ranging from minimal or absent in some developing countries, where use of insecticides has been low, to extremely severe in many developed countries. Since the occurrence of insect resistance to insecticides was firstly recognized in 1908, the increase in recent decades has been almost linear and now the number of species of insects and acarines in which resistant strains have evolved have been increased to a total of 432. Of these, $261(60\%)$ are agricultural importance and $171(40\%)$ of medical/veterinary importance. The phenomenon of insecticide resistance is asserting itself as the greatest challenge to effective chemical control of many important insect pests. Resistance of insects to insecticides has a history of nearly 80 years, but its greatest increase and its strongest impact have occurred during the last 40 years following the discovery and extensive use of synthetic organic insecticides and acaricides. The impact of resistance should be considered not only in terms of greater cost of pest control due to increased dosages and number of applications but also in terms of the ecological disruption of pest-beneficial species density relationships, the loss of investment in the development of the insecticides concerned, and socio-economic disruption in agricultural communities. Despite its grave economic consequences, the phenomenon of insecticide resistance has received surprisingly little attention in Korea. Since the study of insecticides started firstly in 1963, many entomologists have been concerned with this study. According to their results, some of the rice pests and some of the mites on orchard trees, for example, have developed worrisome level of resistance in several areas of this peninsula. With many arthropods, considerable advances in the developed countries have been made in the study of the biochemical and physiological mechanisms of resistance. Progress involves the biochemical characteristics of specific defense mechanisms, their genetics, interactions, and their quantitative and qualitative contribution to resistance. But their studies arc still inadequately known and relatively little have been contributed in terms of unique schemes of population management in achieving satisfactory pest control. It is apparent that there is no easy solution to resistance as a general phenomenon. For future challenging to effective control of insect pests which are resistant to the insecticides concerned, new insecticide groups with distinctly novel mode of action are urgently needed. It is clear, however, that a great understanding of the factors which govern the intensity of selection of field population for resistance could lead to far more permanently successive use of chemicals within the framework of integrated pest management than heretofore practiced.

  • PDF

Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin (Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과)

  • Park, Subin;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.122-131
    • /
    • 2022
  • Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to pylaclostrobin were used to investigate the cross-resistance with fungicides belonging to the strobilurins and the characteristics of fungicidal controlling activities with different mechanisms against the isolate resistant to the fungicide. The resistant isolate of 20CDJ6 also showed the resistance to azoxystrobin, trifloxystrobin, and kresoxim-methyl, suggesting that there is a cross-resistance relationship. All fungicides with different action mechanisms inhibited mycelial growth of both susceptible and resistant isolates of C. acutatum s. lat., but their disease control effects in fruits were different according to the fungicides. The disease control effect of isopyrazam against 20JDS8 and 20CDJ6 was very low, and fluazinam showed a control effect of 91.9% and 88.1% against 20JDS8 and 20CDJ6 only when it was treated before inoculation by spraying spore suspensions on pepper fruits without wounds. Tebuconazole and prochloraz effectively inhibited not only the mycelial growth of 20JDS8 and 20CDJ6 on potato dextrose agar medium, but also disease incidence in red pepper fruits. As a result of this study, C. acutatum s. lat. 20CDJ6 resistant to pyraclostrobin showed cross-resistance with other strobilurin fungicides. In addition, we think that fluazinam, tebuconazole, and prochloraz can be recommended as alternative fungicides for the control of red-pepper pyranthracnose pathogens resistant pyraclostrobin. However, fluazinam can be effective only if it is treated protectively before the occurrence of the disease.

MOTION RESISTANCE ANALYSIS OF A CIRCULAR STEEL WHEEL IN STICKY SOIL

  • Kishimoto, T.;Ohtomo, K.;Nishizaki, K.;Choe, J.S.;Jun, H.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.109-116
    • /
    • 2000
  • The objective of this study is to measure rim surface adhesion and to calculate motion resistance produced by the adhesion acting on the rim section of a circular wheel under sticky soil condition. The mechanisms of generating motion resistance by the adhesion on a circular wheel were analyzed through wheel motion. Experiments were conducted in an indoor soil bin that contains loam soil. A circular steel wheel was used for experiments. A part of the wheel rim was cut off, and transducers which can measure normal and tangential forces were installed in this section. Calculated motion resistance at a part of the rim section was superposed for one wheel rotation as motion resistance produced by the rim surface adhesion. The motion resistance increased with increasing the dynamic load. Ratio of the motion resistance to total motion resistance measured by an axis transducer was about 23 to 46 % in this study.

  • PDF