• Title/Summary/Keyword: Resistance inhibition

Search Result 544, Processing Time 0.028 seconds

Screening of Bifidobacterium spp. for the Development of Infant Probiotics (유아용 생균제 개발을 위한 Bifidobacterium spp.의 선발)

  • Yang, Hyun-Ju;Jang, Keum-Il;Kim, Chung-Ho;Lee, Yoon-Bok;Sohn, Heon-Soo;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.790-794
    • /
    • 2004
  • Bifidobacterium spp. exhibits the highest number of counts among species of microflora in breast-feeding infant intestines and has been used as probiotics. From infant groups with different diets, 42 Bifidobacterial strains were isolated by selective plate, Gram-staining, and morphology using method of Mitsuoka, among which seven isolates were identified as Bifidobacterium spp. by F6PPK test, MIDI, and PCR. B. bifidum PBH-30, selected for development of probiotics, showed high resistance against low pH and oxgall treatment, and inhibition against pathogens such as Salmonella typhimurium and Staphylococcus aureus. B. bifidum PBH-30 could be applicable to dairy products as probiotic strains due to its excellent growth in raw milk.

Antimicrobial Effect of Garlic Extract against Pathogenic Bacteria (병원성 세균에 대한 마늘추출물의 항균효과)

  • Moon, Weon-Hee;Yook, Keun-Dol
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.477-484
    • /
    • 2014
  • The purpose of this study is to verify the antimicrobial effect of garlic and black garlic against pathogenic bacteria. For the comparative analysis of antibacterial effects of garlic, Ampicillin $10{\mu}g$ (BBL) was used as control antibiotics. Research experiments were conducted on each of November 2013 and January 2014. Susceptibility to the antimicrobial effect was measured through Kirby-Bauer disc diffusion method and verified according to the standard proposed by the CLSI. Antimicrobial effect of fresh garlic was higher regardless of the method to extract than Ampicillin $10{\mu}g$. In contrast, the manufacturing methods of the black garlic had no effective differentiations. In antimicrobial susceptibility test, black garlic showed resistance to all of 4 strains. However, in the ethanol-extract of fermented black garlic(natural aging of 15 days.) was found the small changes of the growth-inhibition-zone against S. aureus (8 mm)and E. coli(7 mm). This study proposes a variety attempts about the extraction methods of black garlic for the possibility of food preservation.

Fermentation characteristics of mulberry (Cudrania tricuspidata) fruit vinegar produced by acetic acid bacteria isolated from traditional fermented foods (전통발효식품으로부터 분리한 초산균을 이용한 꾸지뽕 열매 발효식초 제조 및 발효특성)

  • Yim, Eun-Jung;Jo, Seung-Wha;Lee, Eun-Sil;Park, Hae-Suk;Ryu, Myeong-Seon;Uhm, Tai-Boong;Kim, Hyoun-Young;Cho, Sung-Ho
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.108-118
    • /
    • 2015
  • To raise the added value of the fruits of Cudrania tricuspidata, Cudrania tricuspidata vinegar was produced and examined for its fermentation conditions. Forty nine acetic acid bacteria with resistance against acetic acid, ethanol, and sulfide as high acetic acid producers were isolated from fermented foods and identified as Acetobacter indonesiensis, A. cerevisiae, A. orientalis, A. tropicalis, A. fabarum, A. pasteurianus, and A. syzygii based on the results of the analysis of the 16S rRNA gene sequences. Among them, two GRAS strains, A. pasteurianus SCMA5 and SCMA6, were finally selected for the production of acetic acid. Optimal vinegar productions were obtained from the medium containing 40% (v/v) fruit juice of Cudrania tricuspidata and 5% (v/v) ethanol at $25^{\circ}C$ for 72 hr. The sensory panel preferred the vinegar fermented with the SCMA06 to that with the SCM05 strain. The radical scavenger capacity of DPPH was 53% higher than that of the control in the vinegar fermented with the SCMA06 strain. The ${\alpha}$-glucosidase inhibitor activity as an index of the antidiabetic drug showed 91% inhibition, which is higher than that of acabose. This study will be helpful for the scale-up production of vinegar with the fruit of Cudrania tricuspidata.

Sanguinarine Increases Sensitivity of Human Gastric Adenocarcinoma Cells to TRAIL-mediated Apoptosis by Inducing DR5 Expression and ROS Generation (AGS 인체 위암세포에서 DR5의 발현 및 ROS 생성의 증가를 통한 sanguinarine과 TRAIL 혼합처리의 apoptosis 유도 활성 촉진)

  • Lee, Taek Ju;Im, Yong Gyun;Choi, Woo Young;Choi, Sung Hyun;Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.927-934
    • /
    • 2014
  • Sanguinarine, a benzophenanthridine alkaloid originally derived from the root of Sanguinaria canadensis, has been shown to possess antimicrobial, antioxidant, and anti-cancer properties. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, but not most normal cells and has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. Our previous study indicated that treatment with TRAIL in combination with subtoxic concentrations of sanguinarine sensitized TRAIL-mediated apoptosis in TRAIL-resistant human gastric carcinoma AGS cells; however, the detailed mechanisms are not fully understood. In this study, we show that sanguinarine sensitizes AGS cells to TRAIL-mediated apoptosis as detected by MTT assay, agarose gel electrophoresis, chromatin condensation and flow cytometry analysis. Combined treatment with sanguinarine and TRAIL effectively induced expression of death receptor (DR) 5 but did not affect expression of DR4 and mitogen activated protein kinases signaling molecules. Moreover, the combined treatment with sanguinarine and TRAIL increased the generation of reactive oxygen species (ROS); however, N-acetylcysteine, ROS scavenger, significantly recovered growth inhibition induced by the combined treatment. Taken together, our results indicate that sanguinarine can potentiate TRAIL-mediated apoptosis through upregulation of DR5 expression and ROS generation.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

Herbicide Resistance in Plant Tissue Culture (식물체(植物體) 조직배양(組織培養)과 제초제(除草劑) 저항성(抵抗性))

  • Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.9-13
    • /
    • 1985
  • This study was conducted to evaluate herbicide resistant plant through tissue culture. Callus was induced from embryos of Echinochloa crusgalli Beauv. (var, oryzicola Ohwi, var. caudata Kitagawa and var, crusgalli). An optium medium for callus induction and succinate dehydrogenase activity in inducted callus were detected and callus growth of various varieties of Echinochloa crusgalli was assessed under the treatment of various rates of butachlor[N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide]. MS medium seemed to be the most appropriate to induce callus from the embryos of varieties of E. crusgalli by using 2,4-D about 5.5mg/l as a hormone source. The activity of succinate dehydrogenase in inducted callus showed positive reaction against to TTC(2,3,5-triphenyltetrazolium chloride) regardless of concentrations of butachlor and varieties of E. crusgalli, indicating that all the callus induced were alive. The callus growths derived from seeds of E, cnesgalli were greatly affected by various rates of butachlor and were completely inhibited at the highest concentration of butachlor, $10^{-3}M$, regardless of varieties of E. crasgalli. $10^{-6}M$ of butachlor inhibited 24.6% of the callus growth of E. crusgalli Beauv, var. oryzicola Ohwi, while E. crusgalli Beauv. var. crusgalli showed 42% of inhibition, showing that there was difference in response of varieties of E. crusgalli Beauv. to butachlor.

  • PDF

Antibacterial effect of bee venom against Gram-positive and negative bacteria isolated from mastitis in dairy cattle (봉독의 젖소 유방염 유래 그람 양성 및 음성 세균별 항균효과 분석)

  • Jung, Sukhan;Oh, Sang-Ik;Lee, Han-Gyu;Jung, Young-Hun;Hur, Tai-Young;Han, Sangmi;Baek, Kui-Jeong;Cho, Ara
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.169-174
    • /
    • 2021
  • Mastitis is an inflammatory condition of the mammary gland, most often caused by bacterial infections, resulting in significant economic losses to the dairy industry. Antimicrobial resistance has been of great concern because of the extensive clinical use of antibiotics. For this reason, the development of new compounds as an alternative treatment to bovine mastitis is needed. Bee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The aim of the present study was to evaluate the antimicrobial activity of bee venom on bacteria isolated from bovine mastitis. A total of 107 isolates from bovine mastitic milk samples collected in 2019 and 2020 in Jeonbuk province. All bacterial isolates were tested for susceptibility to bee venom of the honey bee (Apis mellifera). In order to obtain comprehensive antibacterial activities of the bee venom, we measured the minimal inhibitory concentration (MIC) of the bee venom against bacterial strains. Bee venom showed significant inhibition of bacterial growth of Gram-negative bacteria Citrobacter spp., Escherchia coli, Klebsiella spp., Pseudomonas spp., Serratia spp. and Raoultella with MIC values of 96, 81, 72, 230, and 85 ㎍/mL, respectively, and Gram-positive bacterial Enterococcus spp., Staphylococcus spp. and Streptococcus spp. with MIC values of 29, 21 and 16 ㎍/mL, respectively. The results indicated that the MIC values were different depending on the bacterial strains, and those of Gram-positive bacteria were lower than those of Gram-negative bacteria for bee venom. These findings suggested that bee venom could be an effective antimicrobial treatment for bovine mastitis; however, further research is necessary to evaluate the mechanism underlying the antimicrobial action, its effectiveness/safety in vivo and effective application for therapeutic use.

Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition (암줄기세포의 특성 및 면역관문억제)

  • Choi, Sang-Hun;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.499-508
    • /
    • 2019
  • Cancer stem cells (CSCs), which are primarily responsible for metastasis and recurrence, have self-renewal, differentiation, therapeutic resistance, and tumor formation abilities. Numerous studies have demonstrated the signaling pathways essential for the acquisition and maintenance of CSC characteristics, such as WNT/${\beta}$-catenin, Hedgehog, Notch, B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Bone morphogenetic protein (BMP), and TGF-${\beta}$ signals. However, few therapeutic strategies have been developed that can selectively eliminate CSCs. Recently, neutralizing antibodies against Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), immune checkpoint inhibitors (ICIs), have shown promising outcomes in clinical trials of melanoma, lung cancer, and pancreatic cancer, as well as in hematologic malignancies. ICIs are considered to outperform conventional anticancer drugs by maintaining long-lasting anti-cancer effects, with less severe side effects. Several studies reported that ICIs successfully blocked CSC properties in head and neck squamous carcinomas, melanomas, and breast cancer. Together, these findings suggest that novel and effective anticancer therapeutic modalities using ICIs for selective elimination of CSCs may be developed in the near future. In this review, we highlight the origin and characteristics of CSCs, together with critical signaling pathways. We also describe progress in ICI-mediated anticancer treatment to date and present perspectives on the development of CSC-targeting ICIs.

α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells

  • Ittiudomrak, Teeranai;Puthong, Songchan;Roytrakul, Sittiruk;Chanchao, Chanpen
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.167-179
    • /
    • 2019
  • Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, ${\alpha}$-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. ${\alpha}$-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with ${\alpha}$-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas ${\alpha}$-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in ${\alpha}$-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both ${\alpha}$-mangostin and apigenin arrested the cell cycle at the $G_2/M$ phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and ${\alpha}$-mangostin-treated SKOV-3 cells, respectively. ${\alpha}$-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and ${\alpha}$-mangostin likely being involved with inflammation.

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.