• Title/Summary/Keyword: Resistance increase

Search Result 4,112, Processing Time 0.035 seconds

Magnetic Properties of Oxide Superconducting Material (산화물 초전도체의 자기적 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.115-118
    • /
    • 2003
  • The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than $100\;{\mu}V$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was $2.9\;{\Omega}/T$. The sensing limit was about $1.5{\times}10^{-5}\;T$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Hydrodynamics prediction of a ship in static and dynamic states

  • Du, P.;Ouahsine, A.;Sergent, P.
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.163-176
    • /
    • 2018
  • The ship hydrodynamics in static and dynamic states were investigated using 3-dimensional numerical simulations. The static case simulated a fixed ship, while the dynamic case considered a ship with free sinkage and trim using the mesh morphing technique. High speed was found to increase the wave elevation around the ship. Compared with the static case, the dynamic case seemed to generate higher waves near the bow and after the stern. The frictional resistance was found be to more dominant. However, the pressure resistance became gradually important with the increase of the ship speed. The trim and sinkage were also analyzed to characterize the ship hydrodynamics in the dynamic state.

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 6. Physical Properties for EPDM-NR-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제6보(第6報)) EPDM과 Natural Rubber 및 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.2
    • /
    • pp.183-192
    • /
    • 1972
  • As a series of tile studies of EPDM-Polymer blends, tile experiment are concentrated to the investigation of the physical properties of tile EPDM-NR-SBR blends. The results are shown as follows: 1. In blending, tensile strength decreased with increase in EPDM contents, especially the ratio of EPDM/NR-SBR is 75/25. 2. Elongation and tear strength were much influenced by blending, especially the ratio of EPDM/NR-SBR is 50/50. 3. Ozone resistance is much improved after blending. It was effective more than tile ratio of EPDM/NR-SBR is 25/75. 4. Aging resistance is much improved after blending. It was effective more than the ratio of EPDM/NR-SBR is 50/50. 5. Hardness increased with increase in EPDM contents and on the other hand, abrasion resistance decreased.

  • PDF

Magnetic Field Sensor using BiPbSrCaCuO Superconductor (BiPbSrCaCuO 초전도 자기검출소자)

  • 이상헌;이성갑;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.429-434
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of BiPbSrCaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than 100 $\mu\textrm{V}$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about 1.5${\times}$10$\^$-5/ T. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

Study on the Ceramics Magnetic Sensor Fabrication Technology (세라믹 자성 센서 제조기술에 관한 연구)

  • Lee, Sang-Heon;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.61-65
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system The prepared material shows the superconductivity at about 95K. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

Magnetic Characteristics of BiPbSrCaCuO Oxide Superconductor (BPSCCO 자기 효과)

  • Lee, Sangl-Heon;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.252-254
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive (비전도성 접착제로 국부적으로 둘러싸인 인터록킹 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.785-792
    • /
    • 2012
  • A new flip chip structure consisting of interlocking joints locally surrounded by non-conductive adhesive was investigated in order to improve the contact resistance characteristics and prevent the parasitic capacitance increase. The average contact resistance of the interlocking joints was substantially reduced from $135m{\Omega}$ to $79m{\Omega}$ by increasing the flip chip bonding pressure from 85 MPa to 185 MPa. Improvement of the contact resistance characteristics at higher bonding pressure was attributed not only to the increased contact area between Cu chip bumps and Sn pads, but also to the severe plastic deformation of Sn pads caused during formation of the interlocking-joint structure. The parasitic capacitance increase due to the non-conductive adhesive locally surrounding the flip chip joints was estimated to be as small as 12.5%.

Effect of KOH Electrolyte and H2O2 Depolarizer on the Power Characteristics of Al/Air Fuel Cells (Al/Air 연료전지의 출력특성에 미치는 KOH 전해질과 H2O2 감극제의 영향)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.303-307
    • /
    • 2015
  • The effects of additive such as $H_2O_2$ in KOH electrolyte solution for the Aluminum/Air fuel cell were investigated with regard to electric power characteristics. The power generated by a Al/Air fuel cell was controlled by the KOH electrolyte solution and $H_2O_2$ depolarizer. Higher cell power was achieved when higher KOH electrolyte concentration and higher $H_2O_2$ depolarizer amount. The maximum power was increased by the increase amount $H_2O_2$ depolarizer, it was found that $H_2O_2$ depolarizer inhibits the generation of hydrogen and the polarization effect was reduced as a result. Internal resistance analysis was employed to elucidate the maximum power variation. Higher internal resistance created internal potential differences that drive current dissipating energy. In order to improve the output characteristics of the Al/Air fuel cell, it is thought to be desirable to increase the KOH electrolyte concentration and increase the $H_2O_2$ addition amounts.