• 제목/요약/키워드: Resistance error

검색결과 433건 처리시간 0.027초

Condition Monitoring of Lithium Polymer Batteries Based on a Sigma-Point Kalman Filter

  • Seo, Bo-Hwan;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.778-786
    • /
    • 2012
  • In this paper, a novel scheme for the condition monitoring of lithium polymer batteries is proposed, based on the sigma-point Kalman filter (SPKF) theory. For this, a runtime-based battery model is derived, from which the state-of-charge (SOC) and the capacity of the battery are accurately predicted. By considering the variation of the serial ohmic resistance ($R_o$) in this model, the estimation performance is improved. Furthermore, with the SPKF, the effects of the sensing noise and disturbance can be compensated and the estimation error due to linearization of the nonlinear battery model is decreased. The effectiveness of the proposed method is verified by Matlab/Simulink simulation and experimental results. The results have shown that in the range of a SOC that is higher than 40%, the estimation error is about 1.2% in the simulation and 1.5% in the experiment. In addition, the convergence time in the SPKF algorithm can be as fast as 300 s.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇 (NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home)

  • 송준용;이성훈;송원경
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.

전기차 배터리 소모량 분석모형 개발 및 실증 (Development and Empirical Validation of an Electric Vehicle Battery Consumption Analysis Model)

  • 서인선;이영미;오상율;곽명창;이현지
    • 한국환경과학회지
    • /
    • 제33권7호
    • /
    • pp.523-532
    • /
    • 2024
  • In popular tourist destinations such as Jeju and Gangwon, electric rental cars are increasingly adopted. However, sudden battery drain due to weather conditions can pose safety issues. To address this, we developed a battery consumption analysis model that considers resistive energy factors such as acceleration, rolling resistance, and aerodynamic drag. Focusing on the effects of ambient temperature and wind speed, the model's performance was evaluated during an empirical validation period from November to December 2023. Comparing predicted and actual state of charge (SoC) across different routes identified ambient temperature, wind speed, and driving time as major sources of error. The mean absolute error (MAE) increased with lower temperatures due to reduced battery efficiency. Higher wind speeds on routes 1 and 6 resulted in larger errors, indicating the model's limitation in considering only tailwinds for aerodynamic drag calculations. Additionally, longer driving times led to higher actual SoC than predicted, suggesting the need to account for varying driver habits influenced by road conditions. Our model, providing more accurate SoC predictions to prevent battery depletion incidents, shows high potential for application in navigation apps for electric vehicle users in tourist areas. Future research should endeavor to the model by including wind direction, HVAC system usage, and braking frequency to improve prediction accuracy further.

Dynamic Threshold MOS 스위치를 사용한 고효율 DC-DC Converter 설계 (The design of the high efficiency DC-DC Converter with Dynamic Threshold MOS switch)

  • 하가산;구용서;손정만;권종기;정준모
    • 전기전자학회논문지
    • /
    • 제12권3호
    • /
    • pp.176-183
    • /
    • 2008
  • 본 논문에서는 DTMOS(Dynamic Threshold voltage MOSFET) 스위칭 소자를 사용한 고 효율 전원 제어 장치 (PMIC)를 제안하였다. 높은 출력 전류에서 고 전력 효율을 얻기 위하여 PWM(Pulse Width Modulation) 제어 방식을 사용하여 PMIC를 구현하였으며, 낮은 온 저항을 갖는 DTMOS를 설계하여 도통 손실을 감소시켰다. 벅 컨버터(Buck converter) 제어 회로는 PWM 제어회로로 되어 있으며, 삼각파 발생기(Saw-tooth generator), 밴드갭기준 전압 회로(Band-gap reference circuit), 오차 증폭기(Error amplifier), 비교기(Comparator circuit)가 하나의 블록으로 구성되어 있다. 삼각파 발생기는 그라운드부터 전원 전압(Vdd:3.3V)까지 출력 진폭 범위를 갖는 1.2MHz 발진 주파수를 가지며, 비교기는 2단 연산 증폭기로 설계되었다. 그리고 오차 증폭기는 70dB의 DC gain과 $64^{\circ}$ 위상 여유를 갖도록 설계하였다. Voltage-mode PWM 제어 회로와 낮은 온 저항을 스위칭 소자로 사용하여 구현한 DC-DC converter는 100mA 출력 전류에서 95%의 효율을 구현하였으며, 1mA이하의 대기모드에서도 높은 효율을 구현하기 위하여 LDO를 설계하였다.

  • PDF

고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델 (Modified Thermal-divergence Model for a High-power Laser Diode)

  • 용현중;백영재;유동일;오범환
    • 한국광학회지
    • /
    • 제30권5호
    • /
    • pp.193-196
    • /
    • 2019
  • 고출력 레이저 다이오드 광원의 안정적 구동을 위한 방열 관리는 필수적이며, 발열부인 활성층 근처의 열흐름에 있어 병목이 심하므로 그 부분의 열저항을 분석하고 설계에 적용하여 개선하는 것이 매우 중요하다. 띠형 발열구조를 갖는 레이저 다이오드 광원은 열전달층 두께에 따라 열저항이 지수함수적으로 급격하게 증가하다가 점점 선형적으로 포화되므로 열저항을 분석함에 있어서 오차가 큰 어려움이 있으며, 보다 정확한 열저항 모델링이 필요하여 수정된 두께의존성 모델함수를 제안하고 그 정확성을 검증하였다. 또한, 전산모사로 얻어낸 열저항의 변화경향성을 미분하여 열전달-단면적의 변화를 구하여 열병목 부위가 직관적으로 파악되게 하였고, 제안하는 모델함수의 열전달-단면적 결과와도 비교하여 분석모델의 예측 정확성을 부연 확인하였다. 고열전도 보조층을 활용하여 열저항이 개선된 구조에 대하여도 그 열전달-단면적 변화경향과 열저항 개선효과를 높은 정확도로 분석한 결과를 소개한다.

S-parameter Circle-fit과 Lorentzian-fit 방법으로 측정된 고온초전도체 박막의 유효표면저항 비교 (A Comparative Study on the Effective Surface Resistance of High-$T_c$ Superconductor Films as Measured by Using the S-parameter Circle-fit and the Lorentzian-fit Methods)

  • 김민정;정호상;이재훈;이상영
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.146-151
    • /
    • 2008
  • Measurements of surface resistance ($R_s$) of high temperature superconductor (HTS) films with accuracy are essential for microwave applications of HTS materials. In using the dielectric resonator method, uncertainties in the unloaded quality factor of the resonator cause significant errors in the measured $R_s$ of HTS films. We compare the Rs values of $YBa_2Cu_3O_{7-{\delta}}$ films calculated from the $Q_0$ as determined from the Lorentzian fit with that from the $Q_0$ as determined from the S-parameter circle-fit at temperatures between 15 K and 77 K. The two sets of values appeared to differ by 5%, 7%, 6%, and 11% at temperatures of 15, 60, 70, and 77 K, respectively, from each other, implying that careful error analysis needs to be performed in obtaining the $R_s$ of HTS films by using the Lorentzian-fit method, with the ones determined from the S-parameter circle-fit used as the reference.

  • PDF

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 (Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature)

  • 이정환;김한수
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.159-166
    • /
    • 2022
  • 본 논문에서는 유한요소해석 프로그램 Abaqus를 이용하여 고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 절차를 제시하고 해석 결과를 비교·분석하였다. 기둥에 축하중과 화재가 가해지는 상황을 해석에 반영하기 위해 Abaqus에서 제공하는 순차 결합 열-응력 해석을 사용하였다. 우선 콘크리트 단면에 대한 열전달 해석을 수행하여 검증한 뒤, 이를 3차원 요소로 확장하고 구조해석과 결합하여 해석을 수행하였다. 해석 과정에서 수렴성 및 정확성에 영향을 미치는 인장 증강 효과와 초기 불완전성을 고려하여 모델링하였다. 해석 결과는 74개 실험 데이터와 비교하였으며, 내화시간을 기준으로 평균 6%의 오차를 나타냄에 따라 유한요소해석을 통해 철근콘크리트 기둥의 내화성능을 예측할 수 있게 되었다.

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).