• Title/Summary/Keyword: Resistance Mechanism

Search Result 1,449, Processing Time 0.03 seconds

The Vector Control of Induction Motor drives Speed Sensorless using a Fuzzy Algorithm

  • Seo, Young-Soo;Lee, Chun-Sang;Hwang, Lak-Hoon;Kim, Jong-Lae;Byong gon Jang;Kim, Joo-Lae;Cho, Moon-Tack;Park, Ki-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1013-1016
    • /
    • 2000
  • In this study, the estimate speed of rotor in the induction motor with Model Reference Adaptive control System (MARC) principle and to study that vector control system feedbacks speed estimated to speed control system and its result is as follows; Considering with explanation an influence of speed estimation mechanism depend on error about the second resistance size established, it estimates the deviation of the second resistance establishment and exhibits a compensation method, what is more, it designs a reparation program using the fuzzy algorithm and testifies the result with the computer simulation. And besides, it composes the load torque estimation and estimates the load torque, as the result, feedback-compensating the result of estimation, it improves the efficiency. In consequence, it makes a good result for more powerful vector control system about the outside trouble.

  • PDF

Investigation of One-dimensional Stress-Release Mechanism in Sand from Model Test

  • Zhuang, Li;Kim, Dongwook;Kim, Ukgie
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.17-27
    • /
    • 2013
  • This paper explores stress release induced by unloading in dry sand. A series of model tests were carried out to measure stresses developed in testing sand during loading and those released during unloading for different boundary conditions. It was found that stress in the sand increased linearly with applied load. At the onset of unloading, almost no stress release was observed. Significant stress release took place when the shear stress in the sand induced by unloading exceeded the frictional resistance and caused movement of sand particles. The initiation and the magnitude of stress release depend on the stress condition prior to unloading, the decrease of external load, and also the frictional resistance in sand. A new conceptual stress-release model was next developed based on the model test results by considering the fundamental frictional behavior of granular materials.

Development of Exhaust Valve Seat Material for the High Performance Engine

  • Oshige, Hiroshi;Takahashi, Teruo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.397-398
    • /
    • 2006
  • In late years, from a trend for ecology of auto motive engine, low emission and low fuel consumption of engine become a social assignment. At the same time, the high output (high efficiency) is required, too. In order to meet those requirements, in comparison with conventional engines, lean A/F (Air fuel ratio) setting is becoming popular for the high performance engines of late years. Exhaust valve seat (sintered material) used in these engines has a problem in wear resistance, because it is exposed to the surroundings that is clean and a high temperature in comparison with the conventional engines. Therefore, wear mechanism with lean A/F of engine was analyzed.The exhaust valve seat (sintered material), that was superior in wear resistance, was developed.

  • PDF

High temperature oxidation behavior of Ti-33.8wt% Al intermetallic compounds (Ti-33.8wt% Al 금속간 화합물의 고온 산화거동)

  • 최송천;조현준;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The oxidation behavior of a two-phase(Ti3Al+TiAl) intermetallic compound, Ti-33.8wt%Al, has been in-vestigated in air at 800, 900 and $^1000{\circ}C$. Though the isothermal oxidation behavior followed a parabolic law up to 100$0^{\circ}C$ indicating that protective oxide scales were formed, the cyclic oxidation behavior followed a lin-ear law in the entire temperature range tested because flaky or stratified scales were usually spalled from the surface during cooling. During oxidation at 80$0^{\circ}C$, the alloy showed excellent oxidation resistance because continuous protective Al2O3 films were formed on the outermost surface of the alloy. However, above $900^{\circ}C$, the oxidation resistance of the alloy was decreased gradually because relatively non-protective TiO2 scales as well as some of Al2O3 scales were formed on the outer oxide scale. The oxidation mechanism of the alloy at different temperature was proposed.

  • PDF

Anti-Corrosive Mechanism of Mg Thin Films Prepared by PVD Method on Electroplated Zn Steel Substrates (PVD법에 의해 Zn 전기도금강판에 제작한 Mg막의 내식 메카니즘)

  • Baek, Sang-Min;Bae, Il-Yong;Mun, Gyeong-Man;Kim, Gi-Jun;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.153-154
    • /
    • 2007
  • Mg thin films were prepared by PVD method on electroplated Zn steel substrate. And the influence of gas pressure on their morphology and crystal orientation of the deposited films were investigated by scannig electron microscopy(SEM) and X-ray diffraction(XRD), respectively. In addition, the effect of corrosion resistance of these films as a funtion of morphology and crystal orientation was evaluated by anodic polarization test. From the measured results, it is investigated that the film of granular structure which deposited in condition of high gas pressure had the highest corrosion resistance.

  • PDF

A Study on a control algorithm and determinant of an optimal process condition based upon ESR process analysis.

  • Hyun, Lim-Sung;Suck, Boo-Kwang;Gyoon, Lim-Tae;Min, Wi-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.4-76
    • /
    • 2001
  • ESR(ElectroSlag Remelting) Process is secondary fine process and melts steels by electric resistance heat and fines the melting steels by an approproate solidification process. The final products are determined through the velocity of melting and the course of solidification in the process that is achieved by way of proper course of solidification. Thus, it is very important to monitor and control the process parameters which affects the melting and solidification process to get the high quality products. This paper describes a method to derive the mathematical model and analysis the dynamic characteristics for designing a controller of the ESR processes. The process consists of a melting and solidifying process and electrical system include the contact resistance mechanism ...

  • PDF

Influence of Shot Peening on Cavitation Erosion Resistance of Gray Cast Iron (쇼트피닝이 회주철의 캐비테이션 침식 저항성에 미치는 영향)

  • Park, Il-Cho
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • In this study, optimal shot peening process conditions were investigated for improving the cavitation erosion resistance of gray cast iron under a marine environment. Shot peening was performed with variables of injection pressure and injection time. The durability was then evaluated through cavitation erosion test which was conducted according to the modified ASTM G-32 standard. The tendency of cavitation erosion damage according to shot peening process condition was investigated through weight loss rate, surface and cross-sectional analysis of the specimen before and after the test. As a result, the shot peening process condition that could minimize cavitation erosion was when the injection pressure was the lowest and when the injection time was the shortest. This was because the flake graphite exposed on the gray cast iron surface could be easily removed under such condition. Therefore, the notch effect can be prevented by surface modification. In addition, the cavitation erosion damage mechanism of gray cast iron was discussed in detail.

Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain

  • Park, Sang-Sang;Lee, Sangho;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • Vancomycin response regulator (VncR) is a pneumococcal response regulator of the VncRS two-component signal transduction system (TCS) of Streptococcus pneumoniae. VncRS regulates bacterial autolysis and vancomycin resistance. VncR contains two different functional domains, the N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR C-terminal DNA binding domain (VncRc) structure using a crystallization approach. Crystallization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P212121. The crystal unit-cell parameters were a = 25.71 Å, b = 52.97 Å, and c = 60.61 Å. The structure of VncRc had a helix-turn-helix motif highly similar to the response regulator PhoB of Escherichia coli. In isothermal titration calorimetry and size exclusion chromatography results, VncR formed a complex with VncS, a sensor histidine kinase of pneumococcal TCS. Determination of VncR structure will provide insight into the mechanism by how VncR binds to target genes.

Investigation on the phase transition of $Ni_2$MnGa alloy by using impedance spectroscopy

  • Park, S.Y.;Cho, K.H.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • The influence of structural transition on the resistance and impedance behavior of Ni$_2$MnGa alloy was investigated. The temperature-dependent resistance and impedance were measured in a temperature range of 4 - 350 K and 185 - 300 K, respectively. The dependence of temperature coefficient of resistivity on temperature shows a kink at 220 K, which is related to the structural transition. The change in dominant scattering mechanism results in the observed kink. Significant increases were also observed around the transition temperature for both real and imaginary parts of impedance. It is thought that this phenomenon originates from disappearance of the martensite twin boundaries during the structural transformation.

  • PDF

Assembly and Function of Seed Endophytes in Response to Environmental Stress

  • Yong-Lan Wang;Han-Bo Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1119-1129
    • /
    • 2023
  • Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.