• 제목/요약/키워드: Resistance Mechanism

Search Result 1,447, Processing Time 0.03 seconds

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

Induction of Resistance by TMV Infection in Capsicum annuum Against Phytophthora Blight (TMV 감염에 의한 고추의 역병 저항성 유도)

  • 이성희;이주연;차재순
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.319-324
    • /
    • 1998
  • Induction of systemic acquired resistance (SAR) against phytophthora blight and pathogenesis-related (PR) protein accumulation by TMV infection in pepper plant (Capsicum annuum cv. Nockwang) were examined to understand the mechanism of the systemic acquired resistance in pepper plant. The zoospore suspension of Phytophthora capsici was inoculated on stem of pepper plant in which TMV-pepper strain had been inoculated on fully expanded upper leaves, and thephytopha blight incidence was examined. Both disease severity and lesion length of phytophthora blight were much smaller in TMV pre-inoculated pepper plant than in uninoculated control plants. The phytophthora blight incidence was decreased about 50% in the TMV pre-inoculated pepper, compared to the uninoculated control plant at 10 days after P. capsici inoculation. Accumulation of PR1 and PR5 proteins in intercellular fluid of TMV-inoculated and uninoculated upper leaves were monitored by immuno-blot with tobacco P1b and PR5a, antibody during induction of SAR. PR1 and PR5 were detected from 24 hours after TMV inoculation in both TMV-inoculated and uninouclated upper leaves, and increased rapidly in TMV-inoculation in uninoculated upper leaves were defoliated. PR5 could be detected upto 20 days after TMV inoculation in uninoculated upper leaves. These results suggest that TMV infection induces SAR against phytophthora blight in pepper plant, and that PR proteins are accumulated very rapidly during induction of SAR and maintained for quite long time in pepper plant.

  • PDF

Effects of Lift Resistance on Dynamic Load Acting on a Circular Wheel

  • Kishimoto, Tadashi;Taniguchi, Tetsuji;Sakai, Jun;Choe, Jung-Seob;Ohtomo, Koh-Ichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1166-1175
    • /
    • 1993
  • The objective of this study is to measure contra-retractive adhesion and lift resistance acting on the rim section of a circular wheel for analyses of their effects on the dynamic load. A circular iron wheel was used for experiments. A part of the wheel rim was cut off, and transducers which can measure normal and tangential forces were installed in this section. Experiments were conducted on a laboratory soil bin which was filled with clayey soil under wet and dry conditions. The mechanism of generating contra -retractive adhesion on a circular wheel were analyzed by the experiments and motion analyses of the wheel. Effects of lift resistance on dynamic load were analyzed by measured forces under wet soil conditions in comparison in comparison with those under dry conditions. The showed that a part of the lift resistance were transferred to the dynamic load. These results may become basic data and ideas for analyses of tractor dynamic under wet soil conditions.

  • PDF

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

High Electrical Current Stressing Effects on the Failure Mechanisms of Austudbumps/ACFFlip Chip Joints (고전류 스트레싱이 금스터드 범프를 이용한 ACF 플립칩 파괴 기구에 미치는 영향)

  • Kim Hyeong Jun;Gwon Un Seong;Baek Gyeong Uk
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.195-202
    • /
    • 2003
  • In this study, failure mechanisms of Au stud bumps/ACF flip chip joints were investigated underhigh current stressing condition. For the determination of allowable currents, I-V tests were performed on flip chip joints, and applied currents were measured as high as almost 4.2Amps $(4.42\times10^4\;Amp/cm^2)$. Degradation of flip chip joints was observed by in-situ monitoring of Au stud bumps-Al pads contact resistance. All failures, defined at infinite resistance, occurred at upward electron flow (from PCB pads to chip pads) applied bumps (UEB). However, failure did not occur at downward electron flow applied bumps (DEB). Only several $m\Omega$ contact resistance increased because of Au-Al intermetallic compound (IMC) growth. This polarity effect of Au stud bumps was different from that of solder bumps, and the mechanism was investigated by the calculation of chemical and electrical atomic flux. According to SEM and EDS results, major IMC phase was $Au_5Al_2$, and crack propagated along the interface between Au stud bump and IMC resulting in electrical failures at UEB. Therefore. failure mechanisms at Au stud bump/ACF flip chip Joint undo high current density condition are: 1) crack propagation, accompanied with Au-Al IMC growth. reduces contact area resulting in contact resistance increase; and 2) the polarity effect, depending on the direction of electrons. induces and accelerates the interfacial failure at UEBs.

  • PDF

Monitoring of Initial Stages of Atmospheric Zinc Corrosion in Simulated Acid Rain Solution under Wet-dry Cyclic Conditions

  • EL-Mahdy, Gamal A.;Kim, Kwang B.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.251-256
    • /
    • 2004
  • Exposure of zinc samples in simulated acid rain solution (SARS) was investigated under a periodic wet-dry conditions using an AC impedance technique. The periodic wet and dry exposure consisted of the immersion of zinc samples in SARS for one hour followed by exposure to 7 hours drying at 60% RH. Phases of the corrosion products were indentified by X-ray diffraction (XRD). The influence of relative humdiity (RH), temperature, and surface inclination on the atmospheric corrosion of zinc is described. The reciprocal of polarization resistance (1/Rp) decreases rapidly during the initial stages then slowly and eventually attains a steady state as exposure time progresses. The average of reciprocal of polarization resistance per cycle, (ARPR) was calculated and found to decrease as number of exposure cycle increases. An increase of temperature enhances the corrsion rate of zinc. The values of ARPR, of a sample inclined at 30 o are lower than those for a sample oriented horizontally. The experiment result shows a pronounced dependence of reciprocal of polarization resistance on RH. Exposure in the presence of carbonate anions gives rise to more protective corrosion products than in nitrate anion solution. The corrosion mechanism during the initial stages of atmospheric zinc corrosion under wet-dry cyclic conditions is suggested.

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

Aging and Recovery of HTV Silicone Rubber Used for Outdoor Insulator (옥외용 HTV 실리콘고무 절연재료의 열화 및 회복특성)

  • Yeon, Bok-Hui;Heo, Chang-Su;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.465-472
    • /
    • 2002
  • This paper presents a study on the aging and recovery of HTV (high temperature vulcanized) silicone rubber used for outdoor insulators. UV irradiation, corona discharge and water immersion were employed as factors of the artificial aging. The effects of changes derived from these stresses on the tracking and arc resistance of silicone rubber were examined. We have investigated the aging phenomena of HTV silicone rubber by the above stresses using the surface energy calculation with contact angle measurement, solvent-extraction, and surface/volume resistivity and so on. These results showed that UV irradiation and corona discharge lead to nearly the same surface oxidation, but the percentage change of mobile low molecular weight by these stresses was different. Furthermore, the oxidized layer induced under UV irradiation restricted the recovery of hydrophobic surface. Water immersion little lowered hydrophobicity level and leaded to a loss of tracking and arc resistance. The degradation mechanism based on our results was discussed.

Tunnel Overbreak Management System Using Overbreak Resistance Factor (여굴저항도를 이용한 터널 발파 여굴 관리 시스템)

  • Jang, Hyongdoo
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • When tunnel is excavated via drilling and blasting, the excessive overbreak is the primary cause of personal or equipment safety hazards and increasing the cost of the tunnel operation owing to additional ground supports such as shotcrete. The practical management of overbreak is extremely difficult due to the complex causative mechanism of it. The study examines the relationship between rock mass characteristics (unsupported face condition, uniaxial compressive strength, face weathering and alteration, discontinuities- frequency, condition and angle between discontinuities and tunnel contour) and the depth of overbreak through using feed-forward artificial neuron networks. Then, Overbreak Resistance Factor (ORF) has been developed based on the weights of rock mass parameters to the overbreak phenomenon. Also, a new concept of tunnel overbreak management system using ORF has been suggested.

Susceptibility of experimental animals to reinfection with Clonorchis sinensis

  • Sohn, Woon-Mok;Zhang, Hong-Man;Choi, Min-Ho;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.2 s.138
    • /
    • pp.163-166
    • /
    • 2006
  • The present study observed the resistance to reinfection with Clonorchis sinensis in various experimental animals including mice, guinea pigs, rabbits, and dogs, as well as rats and hamsters. The resistance rates to reinfection in rats, mice, hamsters, guinea pigs, rabbits, and dogs were 79.7%, 58.0%, -12.6%, 54.8%, 62.6%, and 6.0%, respectively. Worms recovered from reinfected rats and mice were immature, and significantly smaller than those from the primarily infected (P < 0.01), whereas those from other animals were fully matured to adults. These findings indicate that the protective response against reinfection with C. sinensis is prominent in rats and mice, and that they may be a good animal model to investigate the mechanism of resistance to reinfection with C. sinensis.