• Title/Summary/Keyword: Resistance Mechanism

Search Result 1,442, Processing Time 0.027 seconds

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Isolation of Norfloxacin Resistan Escherichia Coli from the Han River and Characterization of Resistance Mechanism

  • Yoosun Jung;Hunjin Hong;Hyeran Nam;Lee, Yeonhee
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 2002
  • A total of twenty-five norfloxacin resistant Escherichia coli were isolated from Joongrang-chun stream, a branch of the Han River in Seoul, Korea from May to July in 2000 and their norfloxacin resistance mechanism was characterized for target site mutation, permeability, and efflux pump. Fourteen iso- lates contained the same three mutations, Ser83→Leu and Asp87→Asn in GyrA and Ser90→ lle in ParC. Six isolates had Ser83→Leu and Asp87→Tyr in GyrA and Ser87→lle in ParC while one isolate had Ser83→Leu and Va1103→Ala in GyrA and Ser80→lle in ParC. Two isolates had mutation(s) in GyrA without any mutation in ParC. Two isolates had Ser80→Arg in ParC instead of the commonly found Ser80→lle. Every norfloxacin resistant isolate had an efflux system but the correlation between the efflux activity and MIC was not observed. The amount of OmpF for norfloxacin permeability decreased in resistant isolates compared to the susceptible strains. When amplified polymorphic DNA (RAPD) and pulse field gel electrophoresis (PFGE) were performed, these isolates showed no similarity to each other or clinical isolates.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

MAP kinase kinase kinase as a positive defense regulator in rice-blast fungus interactions

  • Kim, Jung-A;Jung, Young-Ho;Lee, Joo-Hee;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.48-52
    • /
    • 2004
  • We have found the role of rice mitogen-activated protein kinase kinase kinase (MAPKKK), OsEDR1, as controling hypersensitive response (HR) and increased disease resistance to rice blast fungus Magnaporthe grisea. Generation of transgenic rice plants through introduction of the over-expression construct of OsEDR1 using Agrobacterium-mediated transformation results in lesion mimic phenotype. Up-regulation of defense mechanism was detected through detection of increased transcription level of rice PBZ1 and PR1a. Inoculation of rice blast fungus on the lesion mimic transgenic lines displayed significantly increased resistance. The disease symptoms were arrested like HR responses which are commonly detected in the incompatible interactions. High accumulation of phenolic compounds around developing lesions was detected under UV light. There was variation among transgenic lines on the timing of lesion progression as well as the lesion numbers on the rice leaves. Transgenic lines with few lesions also show increased resistance as well as equal amount of grain yields compared to that of wild type rice cultivar Nipponbare. This is the first report of the MAPKKK as a positive regulator molecule on defense mechanism through inducing HR-like cell death lesion mimic phenotype. The application of OsEDR1 is highly expected for the development of resistant cultivars against rice pathogens.

  • PDF

Effects of CaO and Ca additions on Microstructure and Ignition Resistance of Pure Mg (Mg의 미세조직과 발화저항성에 대한 CaO 및 Ca의 영향)

  • Ha, Seong-Ho;Lee, Jin-Kyu;Kim, Shae-K.;Jung, Seung-Boo;Kim, Young-Jig;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.146-151
    • /
    • 2006
  • In this study, effects of CaD and Ca addtions on microstructure and ignition resistance of pure Mg were investigated. With increasing Ca and CaO contents, the grains in Ca and CaO added Mg were refined and ignition temperatures of CaO and Ca added Mg increased, too. As a result of phase analysis, CaO seemed to be reduced to Ca. $Mg_2Ca$ phase was formed even in 0.1 wt%CaO added pure Mg by reduction mechanism, while $Mg_2Ca$ phase was formed in over 1.35 wt% Ca added pure Mg. Thermodynamical consideration for the reduction mechanism of CaO in pure Mg was carried out.

Role of general esterases in deltamethrin resistance mechanism of diamondback moth, Plutrlla xylostella L. (배추좀나방(Pulltella xylostella L.)의 deltamethrin 저항성 기작에 관한 에스테라제의 역할)

  • 김용균;장동걸
    • Korean journal of applied entomology
    • /
    • v.35 no.1
    • /
    • pp.74-79
    • /
    • 1996
  • General esterases were analysed quantitatively and qualitatively to see their role in deltamethrin resistance mechanisms of the diamondback moth, Plutella xylostella L. Selection with 0.1 g of deltamethrin in each generation induced the moth to decrease susceptibility to the insecticide and to increase esterase activities of the fourth instar larvae. Both characters were highly correlated so that the correlation coefficient (r) between LDSo @g) of deltamethrin and esterase activities (~M/min/pg) was 0.9918 (P=0.0082). Nondenaturing PAGE (6%) separated 17 esterase bands from the whole body extracts of the fourth instar larvae. Deltamethrin-selected populations had fewer esterase bands than had the unselected. Four esterase bands (E3, E4, Ell, and E13) were, however, specific to deltamethrin-selected populations.

  • PDF

Development of Acaricidal Resistance and Esterase Isozyme of Tetranychus urticae (Acarina : Tetranychidae) (점박이응애의 살비제저항성 발달과 Esterase Isozyme에 관한 연구)

  • 김상수;이승찬
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.170-175
    • /
    • 1990
  • These studies were conducted to examine the mechanism of acaricidal resistance in the twospotted spider mite (Tetranychus urticae Koch). The resistant strains were obtained by succssive selection of five acaricides including carbonphenothion and ethion of organophosphorus compound, dicofol of organochlorine compound, cyhexatin of compound and biphenthrin of synthetic pyrethroid. Esterase isozymes were separated by polyacrlyamide gel susceptible strains. The differences of the esterase isozymes of the resistant strains were Est. 1, Est. 3 in the carbonphenothion-selected strain, Est. 3 in the ethion- and the cyhexatin-selected strains, Est. 1, Est. 3, Est. 7 in the dicofol-selected strain, Est. 7 in the biphenthrin-selected strain as compared to the susceptible strain. With the difference of electrophoretic bands and their activities, esterases were related to the resistant mechanism of tested acaricides.

  • PDF

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.